
М.А.КАРАЕВ, А.Г.АЗИЗОВ, А.М.РАГИМОВ, Г.Г.РЗАЕВА

РАБОТА ЦЕНТРОБЕЖНЫХ НАСОСОВ НА ВЯЗКИХ ЖИДКОСТЯХ

УЧЕБНОЕ ПОСОБИЕ

БАКУ - 2005

МИНИСТЕРСТВО ОБРАЗОВАНИЯ АЗЕРБАЙДЖАНСКОЙ РЕСПУБЛИКИ АЗЕРБАЙДЖАНСКАЯ ГОСУДАРСТВЕННЯ НЕФТЯНАЯ АКАДЕМИЯ

М.А.КАРАЕВ, А.Г.АЗИЗОВ, А.М.РАГИМОВ, Г.Г.РЗАЕВА

РАБОТА ЦЕНТРОБЕЖНЫХ НАСОСОВ НА ВЯЗКИХ ЖИДКОСТЯХ

УЧЕБНОЕ ПОСОБИЕ

Рекомендовано методической комиссией АГНА по учебникам и учебным пособиям Протокол №_____ от___

УДК: 621.67.001.11

M69

КАРАЕВ Мирюлдуз Агабек оглы, д.т.н., профессор, **АЗИЗОВ** Азизага Гамид оглы, к.т.н., доцент, **РАГИМОВ** Ариф Махи оглы, д.т.н., профессор, **РЗАЕВА** Гюлназ Гаджи кызы, ст. преподаватель.

РАБОТА ЦЕНТРОБЕЖНЫХ НАСОСОВ НА ВЯЗКИХ ЖИДКОСТЯХ

УЧЕБНОЕ ПОСОБИЕ. (Для студентов специальности «Гидромашины, гидроприводы и гидропневмоавтоматика»). Баку. АГНА, 2005 г., 175с.

Учебное пособие освещает ряд вопросов, связанных с пересчетом характеристик центробежных насосов с воды на вязкие жидкости и соответствует программе курса «Лопастные гидромашины» для студентов нефтемеханического факультета специальности ТТ 060800 «Гидравлические машины, гидроприводы и гидропневмоавтоматика», а также оно может быть полезно студентам других механических и горных специальностей и инженерно-техническим работникам, имеющих дело с выбором центробежных насосов и расчетами по перекачке вязких жидкостей, в том числе нефти и нефтепродуктов.

Рис. -96, табл. -35, приложений -12, литература -39.

Редактор: доктор технических наук, профессор Р.М. Саттаров

Рецензенты: доктор технических наук, профессор С.О. Гусейнов,

кандидат технических наук, доцент В.Г.Шарифов.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1. Коэффициент быстроходности тихоходных и лопастных	
насосов нормальной быстроходности в системе СИ	6
1.1. Перевод коэффициента быстроходности n_s в систему	
СИ	7
1.2. Удельное число оборотов рабочего колеса	
центробежного насоса	8
1.3. Коэффициент быстроходности многосекционных	
насосов с параллельно работающими рабочими колесами.	9
1.4. Коэффициент быстроходности для жидкости боле	
вязкой и тяжелой, чем вода	9
1.5. Некоторые вопросы подобия натуры и модели	
центробежного насоса	11
2. Пересчет характеристики центробежного насоса с воды на	
более вязкую жидкость	
3. К определению геометрических параметров рабочего коле	
центробежного асоса	26
4. Влияние вязкости перекачиваемой жидкости и	
коэффициента n_s на характеристики центробежного насоса	29
5. Напор насоса H_0 при нулевой подаче ($Q = 0$)	35
6. Работа центробежного насоса консольного типа 2К-6 при	
перекачке парафинистых нефтей	39
7. Испытания центробежного насоса 4HDB при	
n = 1450 об/мин	53
8. Работа центробежного насоса типа 4HDB при перекачке	
буровых растворов	57
9. Исследование гидравлических показателей центробежных	
насосов для перекачки нефти по магистральным	
трубопроводам	
9.1. Исследование гидравлических показателей подпорного	
центробежного насоса НМП2500-74	59
9.2. Исследование гидравлических показателей	
центробежных насосов HM7000-210 и 16HD10×1	
ПРИЛОЖЕНИЯ	70
ЛИТЕРАТУРА	172

ВВЕДЕНИЕ

Претворение жизнь контракта нашей В века В Республике требует решения важных задач ПО транспортировке и эксплуатации насосных установок перекачке нефтепродуктов. Одной из главных задач проектированию эксплуатации И насосных установок выбор является правильный центробежного насосного агрегата и самого насоса, параметры работы которого при эксплуатации должны соответствовать оптимальным, чтобы обеспечить наибольший КПД. Известно, что в настоящее время практически все каталоги и паспорта насосов содержат центробежных основные характеристики насосов, полученные при испытании на воде, в то время как вязкость перекачиваемых нефтепродуктов существенно отличается от вязкости воды, значительно изменяясь в широких пределах в нефтепродукта зависимости самого И температуры OT перекачки. Поэтому, при проектировании и эксплуатации центробежных насосных установок требуется произвести пересчет характеристик подбираемых насосов с воды на перекачиваемые нефтепродукты. В литературе приводится большое число различных методов пересчета характеристик центробежных насосов с воды на более вязкую жидкость. Однако, по мере накопления экспериментального материала, более четко выявляются достоинства и недостатки различных методов пересчета, и пределы их возможного применения.

Предлагаемое учебное пособие содержит ответ на часть пособии показаны поставленных вопросов. В применения метода пересчета по Айзенштейну, а также необходимые поправки, которые позволяют более точно произвести пересчет характеристик нефтяных центробежных Предлагаемые поправки получены экспериментального материала, как самих авторов, так и других исследователей. В пособии также приводится метод коэффициента быстроходности расчета пересчета центробежного насоса в системе СИ.

В приложениях к пособию приводятся справочные материалы по характеристикам, конструкциям, материальному исполнению, габаритным размерам для различных типов центробежных насосов для перекачки воды, нефтепродуктов и химически активных жидкостей. Эти материалы могут студентами быть использованы при курсовом проектировании и выполнения выпускных работ. Полезным для студентов будет также таблица, в которой приведены существующих переименованные новые марки центробежных насосов.

Пособие составлено в соответствии с программой курса гидромашины» студентов нефтемеха-«Лопастные ДЛЯ факультета «Гидравлические нического специальности гидроприводы и гидропневмоавтоматика». машины, могут использовать также студенты, магистранты других специальностей нефтемеханического и нефтепромыслового инженеры факультетов, a также соответствующих специальностей, проектированием занимающихся И эксплуатацией насосных центробежных установок

1. КОЭФФИЦИЕНТ БЫСТРОХОДНОСТИ ТИХОХОДНЫХ И ЛОПАСТНЫХ НАСОСОВ НОРМАЛЬНОЙ БЫСТРОХОДНОСТИ В СИСТЕМЕ СИ

Большое значение приобретают перспективные научноисследовательские работы созданию научного задела дальнейшего прогресса насосостроения. Здесь К основным направлениям научно-исследовательских работ относится создание высокопроизводительного, надежного насосного оборудования для транспортировки нефти.

На практике при выборе лопастного насоса широко используется размерный коэффициент быстроходности

$$n_s = 3,65 \frac{n\sqrt{Q}}{H^{\frac{3}{4}}} \tag{1}$$

где n — частота вращения рабочего колеса, об/мин; Q — оптимальная подача, H — напор, развиваемый центробежным насосом.

Коэффициент быстроходности n_s (или удельной коэффициент быстроходности) является универсальным параметром, критерием подобия. Это означает, что если два насоса имеют различные значения n, Q и H, но одно и то же значение n_s , то они называются подобными.

Конструкция рабочего колеса в значительной степени зависит от n_s . В зависимости от его значения рабочие колеса лопастного насоса условно разделяют на пять основных типов:

1 — тихоходные (
$$\frac{d_2}{d_0}$$
 = 2,5 ÷ 3; 40 < n_s < 80);

2 – нормальной быстроходности
$$(\frac{d_2}{d_0} = 2; 80 < n_s < 150);$$

3 — быстроходные (
$$\frac{d_2}{d_0}$$
 = 1,2 ÷ 1,4; 1500 < n_s < 300);

4 — диагональные (
$$\frac{d_2}{d_0}$$
 = 1,2; 300 < n_s < 600);

5 – осевые (
$$\frac{d_2}{d_0}$$
 = 1; n_s > 600);

При увеличении n_s , как правило, наружный диаметр рабочего колеса d_2 уменьшается.

Величина n_s характеризует данный тип насоса и облегчает выбор типа насоса для определения подачи Q, при заданном напоре H. Наивысший КПД имеют центробежные насосы с $n_s = 90...300$. Таким образом, выбор n_s (удельной быстроходности) диктуется экономическими соображениями и стремлением получить высокий КПД и малые габариты насоса при допустимой высоте всасывания.

1.1. Перевод коэффициента быстроходности n_s в систему СИ

Если центробежный насос подаёт Q_s м³/сек жидкости, то при H =1м полезная мощность будет:

$$N_s = \frac{\rho \cdot g \cdot Q_s \cdot H}{1000} \tag{2}$$

Для единичного эталонного насоса, для которого $N_s=1$ кВт и H=1м, поэтому для воды при $\rho=1000$ кг/м³, имеем

1 =
$$\frac{1000 \cdot 9, 8 \cdot Q_s \cdot 1}{1000}$$
;
 $Q_s = \frac{1}{9.8} \text{ м}^3/\text{сек}.$

В соответствии с этим по И.Г.Есьману [1]

$$n = n_s \cdot \frac{H^{\frac{3}{4}}}{\sqrt{Q}} \cdot \sqrt{Q_s} \tag{3}$$

ИЛИ

$$n = n_s \cdot \frac{H^{\frac{3}{4}}}{\sqrt{Q}} \cdot \sqrt{\frac{1}{9,8}} \quad . \tag{4}$$

Тогда

$$n_s = 3.1 \cdot \frac{n \cdot \sqrt{Q}}{H^{\frac{3}{4}}} \tag{5}$$

Зависимость (5) записана для воды в системе СИ.

1.2. Удельное число оборотов рабочего колеса центробежного насоса

В связи с переходом к системе СИ еще вводят помимо коэффициента быстроходности n_s удельную частоту вращения n_q (удельное число оборотов рабочего колеса). Число n_q так же как n_s , является критерием подобия лопастных насосов и режимов их работы. Эти коэффициенты тесно связаны с формой рабочего колеса.

При увеличении n_s отношение $\frac{d_2}{d_o}$ уменьшается, а ширина колеса b_2

растет $(d_0$ — диаметр горловины рабочего колеса, у тихоходных насосов $d_0 = d_1$, у остальных насосах $d_0 > d_1$).

В нашей работе [2] было принято $Q_s = 1 \text{ м}^3/\text{сек}$ и

$$n_{s}^{'} = \frac{n \cdot \sqrt{Q}}{H^{\frac{3}{4}}} \tag{6}$$

где n_s фактически является удельным числом оборотов рабочего колеса центробежного насоса.

Введем обозначение:

$$n_q = \frac{n \cdot \sqrt{Q}}{H^{\frac{3}{4}}} \tag{7}$$

На основании (1) и (7)

$$n_q = \frac{n_s}{3.65}.$$

Если вместо воды перекачивается жидкость, отличающаяся от воды по своей плотности, то тот же насос будет очевидно развивать напор H, если его выразить в метрах столба перекачиваемой жидкости.

1.3. Коэффициент быстроходности многосекционных насосов с параллельно работающими рабочими колесами

Рабочее колеса с двусторонним входом жидкости принимают за два параллельно работающих колеса и расход приходящийся на каждое колесо, находят из выражения:

$$Q_I = \frac{Q}{i}$$
,

где i — число параллельно включенных колес.

Коэффициент быстроходности для многосекционного центробежного насоса с *i* работающими параллельно рабочими

колесами при перекачке жидкости, относительная плотность которой $\rho \neq 1$, запишется

$$n_s = 3,65 \frac{n\sqrt{\rho \cdot Q_1}}{\left(\frac{H}{K_p}\right)^{\frac{3}{4}}}$$
 (8)

где K_p — число последовательно работающих рабочих колес [3]. Отметим, что величины относительной плотности и относительного удельного веса жидкости относительно воды равны и не имеют размерности.

1.4. Коэффициент быстроходности для жидкости более вязкой и тяжелой, чем вода.

Если перекачивается не вода (ϵ), а более вязкая жидкость (ν), и плотность её отличается от плотности воды ($\rho_{\epsilon} \neq \rho_{\nu}$), то и напоры, развиваемые насосом, не будут равны: $H_{\epsilon} \neq H_{\nu}$. В этом случае плотность берется для вязкой жидкости, а напор H_{ν} в метрах столба перекачиваемой жидкости. Тогда можно записать, что мощность, развиваемая единичным – эталонным насосом, будет:

$$N_s = \frac{\rho_v \cdot g \cdot Q_s \cdot H_v}{1000},$$

если $H_{\nu} = 1$ м, $N_{\nu} = 1$ кВт, то

$$1 = \frac{\rho_{\nu} \cdot g \cdot Q_{s} \cdot 1}{1000},$$

тогда

$$Q_s = \frac{1000}{\rho_v \cdot g} = \frac{102}{\rho_v} \tag{9}$$

И

$$n = n_s' \frac{H_v}{\sqrt{Q_v}} \cdot \sqrt{\frac{102}{\rho_v}} ,$$

И

$$n_{s}' = \sqrt{\frac{\rho_{\nu}}{102}} \frac{n\sqrt{Q_{\nu}}}{H_{\nu}^{\frac{3}{4}}}$$
 (10)

Здесь n_s коэффициент быстроходности центробежного насоса для жидкости более тяжелой и более вязкой, чем вода, записанный в системе СИ.

Не останавливаясь на подробностях вывода, которые приведены в работе [25], зависимость для определения коэффициента быстроходности в системе СИ будет иметь вид:

$$n_s = \frac{1212n \cdot \sqrt{Q}}{(gH)^{\frac{3}{4}}},\tag{10.1}$$

где Q – подача центробежного насоса в режиме максимального КПД, H – высота, на которую может быть поднята жидкость насосом в режиме максимального КПД, $g \cdot H$ – удельная работа рабочего колеса, n – число оборотов рабочего колеса в минуту.

По нашему мнению формула (10.1) менее удобна при выполнении расчетов, чем рекомендуемая нами зависимость (10).

Отметим, что в настоящее время нет общепринятого у многих авторов объяснения о том, что подача Q и напор должны соответствовать оптимальным значениям, а H выражено в метрах столба перекачиваемой жидкости.

1.5. Некоторые вопросы подобия натуры и модели центробежного насоса

Характерными величинами геометрического подобия натуры и модели применительно к центробежным насосам следует отнести наряду с диаметром рабочего колеса, также и гидравлический радиус межлопастных каналов рабочего колеса и каналов между корпусом и рабочим колесом в самом корпусе. Учет отмеченных факторов является непростой задачей и создает значительные ещё трудности, если принять во внимание существование масштабного эффекта при моделировании из-за относительной шероховатости поверхностей натуры и модели. Подобие потоков с удовлетворяющих условиям учетом геометрического, трения, кинематического и материального подобия, будет только в том случае, если для каждой пары соответственных точек потока натуры и модели число Рейнольдса будет иметь одно и то же значение. Часто не удается осуществить подобие, особенно вследствие трудностей,

связанных с созданием подобия шероховатостей смоченных поверхностей натуры и модели.

В результате тех и иных допущений, допускаемых при гидравлическом моделировании, возникают определённые погрешности. При переходе на натуру, результаты, полученные при исследовании модели, могут иметь значительные погрешности, часто возникающие в первую очередь из-за масштабного эффекта [29]. К этому следует добавить то, что в проточных каналах центробежного насоса, по ходу движение жидкости гидравлический радиус изменяется в каждом канале. Жидкость в проточных каналах имеет как поступательное, так движение, вращательное. Возникает комплекс различных источников местных гидравлических потерь. Не исключена их интерференция. Влияние отмеченного при перекачке более вязких и различных по плотности жидкостей будет больше влиять на гидравлические показатели. Вообще центробежный насос в целом не просто труба и здесь нарушаются качественные и количественные показатели трубной гидравлики, например, в оценке критического числа Рейнольдса. Поэтому утверждение, приведённое в работе [25], что при равенстве чисел Рейнольдса условия динамического подобия в натуре и модели центробежного насоса соблюдаются, не может быть принято за основу. Также мнением, приведенном в работе [25], согласиться c что применительно к лопастным насосам «при течении жидкости в квадратичного сопротивления условие динамического области пособия выполняется автоматически».

Для одного и того же центробежного насоса, когда $d_{2H} = d_{2M}$ и $b_{2H} = b_{2M}$, но для двух разных режимов его работы на одной и той же жидкости, известное уравнение запишется:

$$rac{Q_H}{Q_M} = rac{n_H}{n_M}$$
 или $rac{Q_1}{Q_2} = rac{n_2}{n_1}$

здесь принято, что $\eta_{OH} = \eta_{OM}$, тогда это условие запишется:

$$\frac{Q_H}{Q_M} = \frac{n_2}{n_1} \cdot \frac{d_H^3}{d_M^3}$$
 или $\frac{Q_H}{n_H \cdot d_H^3} = idem$

Из проведенных нами исследований, результаты которых приведенны в данной работе, следует, что применение этого условия при перекачке разных по плотности и вязкости жидкостей приводили в некоторых насосах к значительным ошибкам. В это условие, как

будет показано ниже, должен быть вставлен поправочный коэффициент

В табл. 1 приводится значение коэффициентов n_q , n_s и $n_s^{'}$ для различных центробежных насосов при перекачке различных по плотности и вязкости жидкостей.

На основании данных табл. 1 был построен график, приведенный на рис. 1. Из рис. 1 следует, что из испытанных нами тихоходных центробежных насосов 4К-6, 8HD6×1, 4HD6-7,5, 6MC6×9, 8MC7×10 коэффициент m > 1, а для центробежного насоса нормальной быстроходности HM2500×230 коэффициент m < 1. Условие равенства коэффициентов быстроходности впервые было приведено в работе [8].

$$\frac{n \cdot \sqrt{Q_1}}{H_1^{\frac{3}{4}}} = \frac{n \cdot \sqrt{Q_2}}{H_2^{\frac{3}{4}}} \tag{11}$$

где Q_1 , H_1 подача и напор при работе на воде вязкостью v_1 , (при максимальном КПД и n = const), Q_2 , H_2 при работе на более вязкой жидкости v_2 ($v_2 > v_1$). Такого же мнения придерживаются и ряд других авторов, в том числе и автор работы [9], при рассмотрении режима работы насосных станций с высокооборотными насосами при перекачке вязких нефтей по магистральным трубопроводам. Здесь отмечено, что при n = const и увеличении вязкости кривая H-Q смещается вниз, максимальный КПД насоса уменьшается, не смещаясь в сторону меньших подач.

В этом случае n_s на режиме максимального КПД остается постоянным, откуда следует $n_s = n_s$ и

$$\frac{Q_{1}}{Q_{2}} = \left(\frac{H_{1}}{H_{2}}\right)^{\frac{3}{2}} \tag{12}$$

Согласно данным, приведенным в табл. 1 условия (11) и (12) не всегда подтверждаются.

Введем в условие (11) поправочный коэффициент m, и запишем условия (11) в следующем виде:

$$m\frac{n\sqrt{Q_1}}{H_1^{\frac{3}{4}}} = \frac{n\sqrt{Q_2}}{H_2^{\frac{3}{4}}} \tag{13}$$

Значение коэффициента m для исследованных центробежных насосов следует брать из табл. 1, а для других центробежных насосов,

Насос,	<i>n</i> – число оборотов		ы перека- жидкости	Коэффициенты			100	
	в мин	вязкость <i>v</i> , см ² /с	плотность $ ho$, кг/м	n_q	n_s	n_s	m	
	740	0,01	1000	13,6	43,0	41,0	-	
	980	0,06	1000	16,3	51,5	49,0	-	
4K6	1480	0,01	1000	14,2	45,3	42,5	-	
	740	3,69	915	14,4	45,0	43,0	1,04	
	980	3,69	915	17,8	56,0	51,8	1,08	
	1480	3,69	915	16,0	51,0	48,0	1,13	
		0,01	1000	16,7	52,5	50,0	-	
0111261	2050	0,17	878	19,5	60,5	59,5	1,15	
8HD6×1	2950	0,81	880	18,0	56,0	54,0	1,07	
		1,32	880	20,5	65,0	62,0	1,24	
	1450	0,01	1000	32,8	118	98,0	-	
		0,103	900	28,3	108	93,6	0,92	
		0,48	900	32,5	105	96,0	0,89	
111 6 2 5 0 0		1,0	900	32,2	102	90,0	0,86	
HM 2500- 230		1,35	900	31,2	108	93,0	0,92	
250		2,5	900	33,2	102	100,0	0,86	
		4,45	900	32,5	105	93,0	0,89	
		6,6	900	34,8	114	103,0	0,96	
		7,2	900	29,6	100	87,5	0,85	
4HD(7.5	1450	0,01	1000	20,3	63,5	45,7	-	
4HD6-7,5		0,329	890	18,2	83,0	64,0	1,3	
6MC6×9	1450	0,01	1000	18,0	56,0	54,0	-	
	1450	0,68	880	20,8	66,0	63,0	1,18	
	12475	0,01	1000	18,6	65,5	56,0	-	
0M07-10		0,629	845	21,0	66,1	63,0	1,01	
8MC7×10		1,32	905	21,0	66,1	63,0	1,01	
		2,48	845	21,0	66,1	63,0	1,01	

m- поправочный коэффициент, равный отношению коэффициентов быстроходности при подаче вязкой жидкости и воды

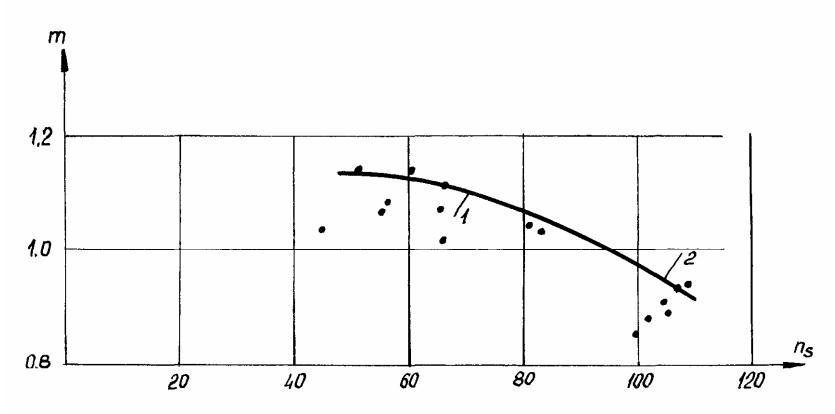


Рис.1 Зависимость коэффициента m'' от коэффициента выстроходности n_s для вязких нидкостей

1-зона для п₅<95; 2-зона для п₅>100

не указанных в табл. 1, необходимо определить по методике, приведенной в данной работе.

2. ПЕРЕСЧЕТ ХАРАКТЕРИСТИКИ ЦЕНТРОБЕЖНОГО НАСОСА С ВОДЫ НА БОЛЕЕ ВЯЗКУЮ ЖИДКОСТЬ

Для напора H, развиваемого центробежным насосом, эффекты от изменения числа оборотов рабочего колеса и изменения вязкости перекачиваемой жидкости не адекватны. Степень влияния числа оборотов рабочего колеса и вязкости жидкости для центробежных насосов разных n_s различна. В основном это следует объяснить нарушением условия (11).

На рис. 2 показаны графики зависимости удельного числа оборотов, коэффициентов быстроходности центробежного насоса консольного типа 4К-6 от числа оборотов в минуту рабочего колеса.

Известно, что зависимости величин потерь от вязкости достаточно сложны. Поэтому, даже если известны характеристики центробежного насоса при работе на воде, получить теоретическим путем достоверные характеристики насоса, перекачивающего вязкую жидкость, весьма затруднительно,

Исследования показывают, что вязкость жидкости меньше влияет на уменьшение КПД лопастных насосов с высоким значением n_s и больше влияет на КПД лопастных насосов с низким значением n_s . Ранее выполненный нами анализ [2; 4] дает основание утверждать, что большинство методов пересчета характеристик центробежного насоса с воды на более вязкую жидкость, а их более 20, является приближенными, особенно при $Q < Q_{\text{опт}}$ или $Q > Q_{\text{опт}}$ и не могут считаться универсальными. Метод пересчета, изложенный в работе [9], является сложным и основывается, в том числе, на условии (11), а это, как было отмечено выше, приемлимо не для всех центробежных насосов. На наш взгляд наиболее приемлемым методом является метод излагаемый в работах [2; 10], где пересчетный коэффициент по напору K_{H} определяется при помощи номограммы (для $Q \ge 20 \text{ м}^3/\text{час}$, H = 4...200м), без использования числа Re, запись которого может осуществляться с применением различных геометрических величин центробежного насоса.

При рассмотрении работы центробежных насосов 4К-6 (при числах оборотов рабочего колеса 740, 980, 1480 в минуту) и HM2500×230 на вязких жидкостях нами за основу взят метод, изложенный в работах [2; 10], с использованием условия (13), приведенного в данной работе.

Из графиков рис. 3...9 следует, что точки, полученные с использованием метод пересчета, предлагаемого в данной работе, согласуются с опытными точками.

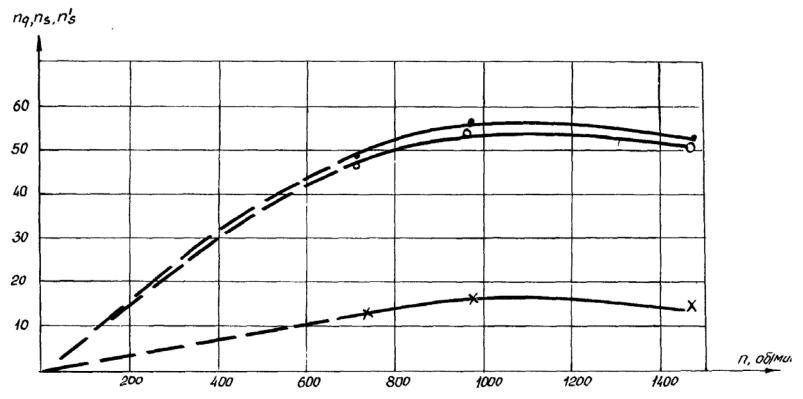
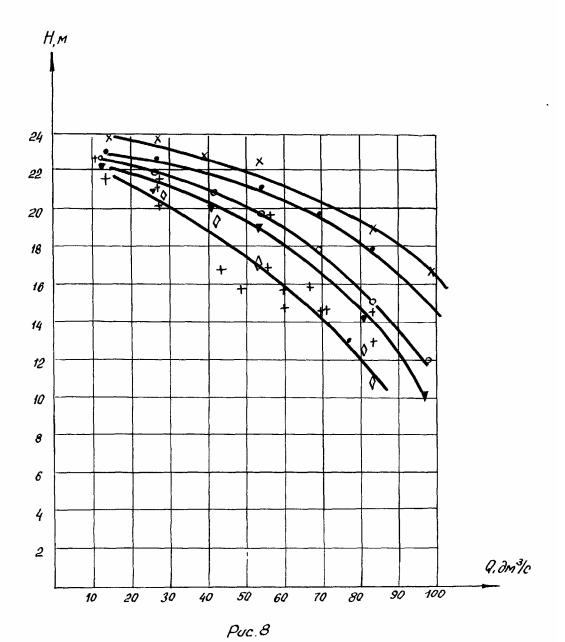
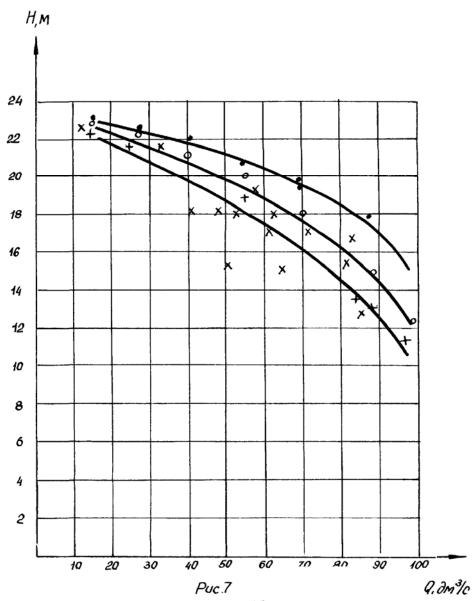
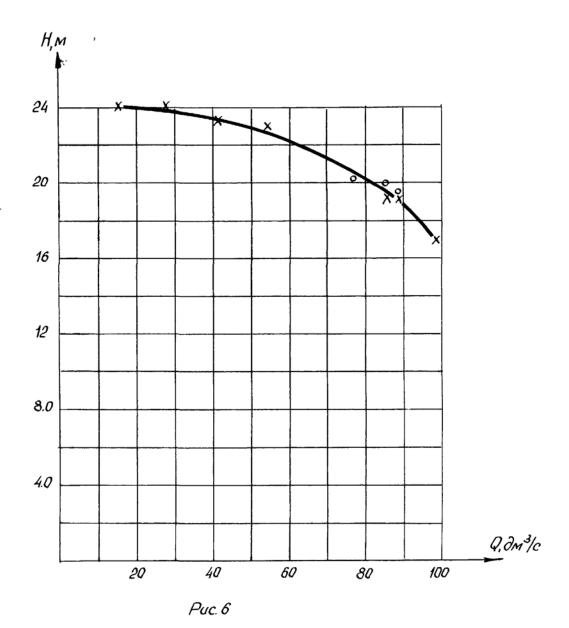
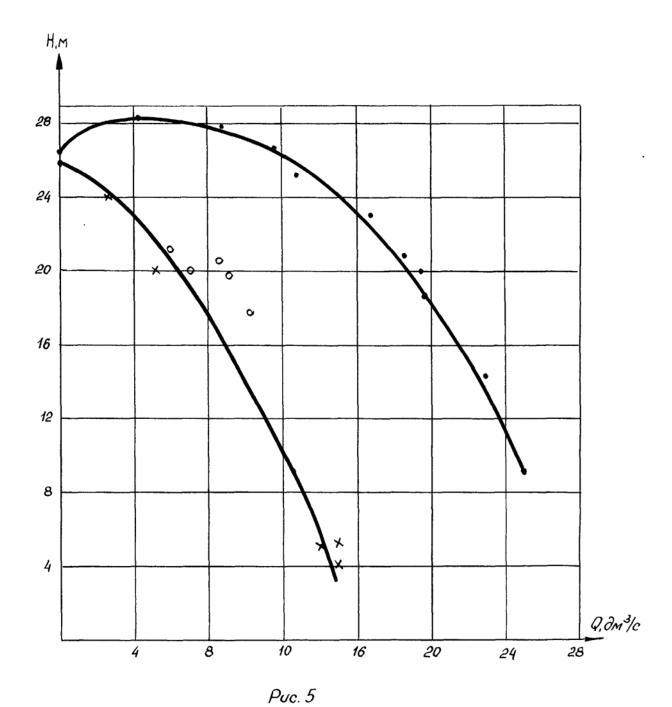




Рис.2. Зависимость $n_q, n_s, n_s' = f(n)$ Насос 4К-6, перекачиваемая нидкость вода • - n_s , o- n_s' , x- n_q .


Нефтяной могистральный центробенный насос НМ-2500-230

0-Boda, $V = 0.01 \text{cm}^2/\text{c}$, •-Hepmb $V = 1.0 \text{cm}^2/\text{c}$ $p = 900 \text{ Ke/M}^3$ X - Hepmb $V = 0.003 \text{ cm}^2/\text{c}$ 0 - Hepmb $V = 6.6 \text{ cm}^2/\text{c}$ 0 - Hepmb $V = 6.6 \text{ cm}^2/\text{c}$ 0 - Hepmb $0 - \text{Hepm$



HM2500 × 230

0- 6000, V = 0.01cm²/c 0- 1000cm V = 1cm²/c, P = 900 Ke/cm³ += 1000cm V = 4.4cm²/c V = 1000cm V = 4.4cm²/c V = 1000cm V = 1cm²/c

HM2500-230 x-нефть; v = 0,103 см³/с o- no nepecчету

•- Вода; х-индустриальное масло, $V = 3.69 \, \text{cm}^2/c$ (20°C); $n = 1480 \, \text{об/мин}$; ц.н. 4K - 6; о- по пересчету

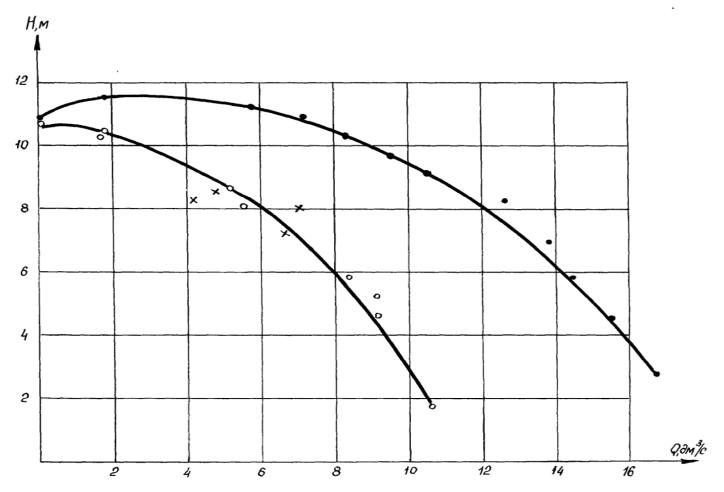
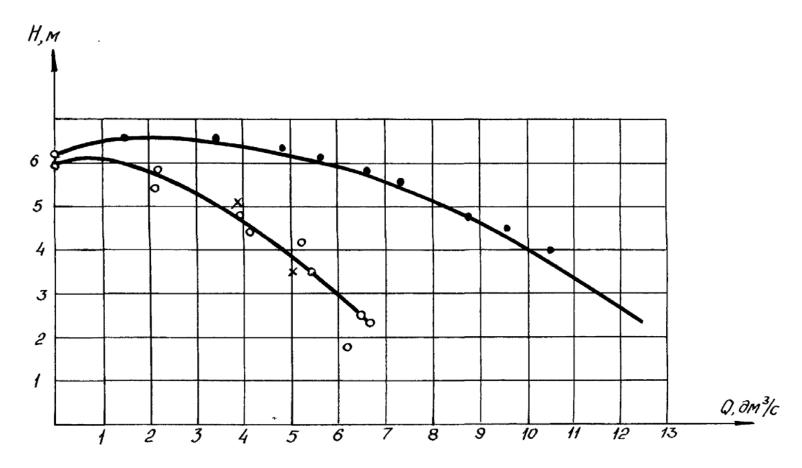


Рис. 4 Зависимость Q-Н насоса 4К-6

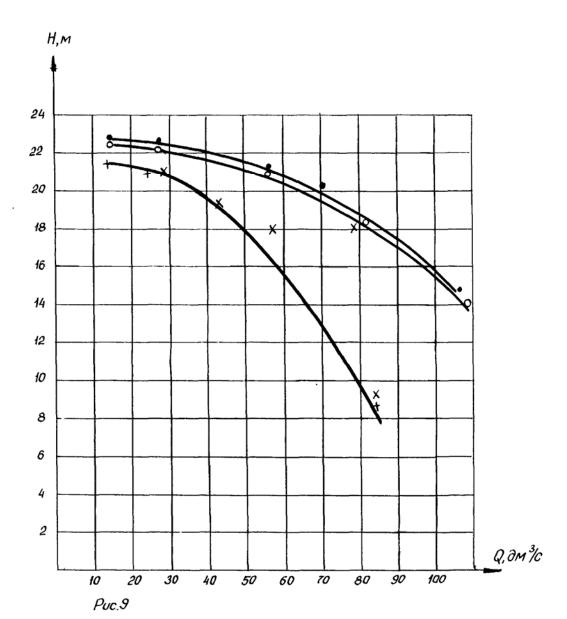

n= 980 об/мин

• - Бода

• - индустриальное масло

√ - 3,69 см²/с

х- по пересчету



Puc.3 Hacoc 4K-6. 3abucumocms Q-H

Π= 740 οδ/мин

• - Вода; о-индустриальное масло; $V = 3,60 \, \text{cm}^2/\text{c}$

х - по пересчету

HM2500-230; n = 1450 ob/muH• - 8000, $V = 0.01 \text{cm}^2/\text{c}$ o - $He\phi mb$ $V = 0.48 \text{ cm}^2/\text{c}$

 $V = 0.48 \text{ cm}^2/C$ $V = 7.2 \text{ cm}^2/C$

+- нефть

X-no nepecyemy ans V= 0,48 u 7,2 cm2/c

3. К ОПРЕДЕЛЕНИЮ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ РАБОЧЕГО КОЛЕСА ЦЕНТРОБЕЖНОГО НАСОСА

В работе [11], взяв за основу условие

$$\frac{Q}{n \cdot d_2^3} = K = \text{idem}, \tag{14}$$

где d_2 - любой линейный размер центробежного насоса (d_2 – внешний диаметр рабочего колес, b_2 – ширина рабочего колес, d_0 – внутренний диаметр рабочего колес и другие), приводятся зависимости для определения геометрических величин рабочего колеса.

$$d_2 = \frac{1}{\sqrt[3]{K}} \cdot \sqrt[3]{\frac{Q}{n}} . \tag{15}$$

Если $K_{d_2} = \frac{1}{\sqrt[3]{K}}$, то

$$d_2 = K_{d_2} \cdot \sqrt[3]{\frac{Q}{n}} \tag{16}$$

На основании статистической обработки установлены значения K для определения d_2 , b_2 u d_0 .

$$K_{d_2} = 9.35 \cdot \left(\frac{n_s}{100}\right)^{-0.5} \tag{17}$$

$$K_{b_2} = 0.75 \cdot \left(\frac{n_s}{100}\right)^{-0.5} \tag{18}$$

$$K_{d_0} = 4 \div 4,5 \text{ и } d_0 = K_{d_0} \sqrt[3]{\frac{Q}{n}}$$
 (19)

На рис. 29 показан график зависимости коэффициента K (17) от коэффициента быстроходности одноколесных центробежных насосов типа 4K-6, HM2500-230, 16HД10×1.

Здесь следует отметить нарушение законов подобия лопастных насосов, в частности, одно из основных условий этого подобия – условие (14). Нарушение имеет место в случае перекачки вязких жидкостей (более вязких, чем вода). Особенно это проявляется у тех насосов, у которых по мере увеличения вязкости оптимальный КПД уменьшается и смещается в сторону меньших подач. Даже у таких

насосов одной серии не могут быть кинематически и динамически одинаковых режимов.

В табл. 2 приведены результаты расчетов по формуле (17) для исследованных нами центробежных насосов на различных жидкостях. Значения n_s для этих насосов взяты из табл. 1.

Условие (14) впервые было использовано в работе [12]/ Нашими исследованиями установлено, что условие (14) применимо только при обобщении данных (Q,H,d_2) центробежных насосов, подача которых в оптимальном режиме при работе на вязких жидкостях незначительно отличается от оптимальной подачи центробежного насоса при работе на воде [4].

Табл. 2

Hacoc,	<i>п</i> , об/мин	Вязкость		рициент		<i>V</i>
		жидкости, <i>v</i> , cм ² /c	быстроходности, n_s для воды для вязкой n_{ss} жидкости n_{sv}		- К _{d2в} воды	K_{d2v} вязкой жидкости
	740	3,69	43,0	45,0	14,4	14
4K-6	980	3,69	51,5	56,0	13,0	12,7
	1450	3,69	45,3	51,0	14,1	13,3
		0,01	118	-	8,65	-
		0,103	-	108,0	-	9,0
		0,48	1	105,0	=	9,05
HM2500-		1,0	ı	102,0	-	9,1
230	n =1450	1,35	-	108,0	=	9,0
230		2,5	1	102,0	=	9,1
		4,45	-	105,0	-	9,05
		6,6	1	114,0	-	8,8
		7,2	-	100,0	=	9,35
	n = 2950	0,01	52,5	-	12,9	-
8HD6×1		0,17	ı	60,5	-	12,1
8ПD0×1		0,81	-	56,0	=	12,5
		1,32	ı	65,0	-	11,7
4HDB-7,5	n =1475	0,01	63,5	-	11,7	-
41100-7,3	n = 14/3	0,329	-	83	=	10,4
8MC7×10	n =1475	0,01	64,5	-	11,6	-
		0,624	-	66,1	-	11,5
		1,32	-	66,1	-	11,5
		2,48	-	66,1	-	11,5
6MC6×0	n=1475	0,01	56	-	12,6	-
6MC6×9	n-14/3	0,68	-	66	_	11,7

4. ВЛИЯНИЕ ВЯЗКОСТИ ПЕРЕКАЧИВАЕМОЙ ЖИДКОСТИ И КОЭФФИЦИЕНТА n, НА ХАРАКТЕРИСТИКИ ЦЕНТРОБЕЖНОГО НАСОСА

Обычно, при подаче центробежным насосом вязких жидкостей (более вязких. чем вода) по мере увеличения вязкости оптимальный КПД уменьшается и смещается в сторону меньших подач. В этом случае условие (14) будет нарушаться. По нашим исследованиям из испытываемых нами насосов ЛИШЬ при испытании $8MC7\times10$ многосекционного насоса увеличением \mathbf{c} вязкости жидкости до 1,32 cm²/сек оптимальный КПД уменьшается, но почти не смещается в сторону меньших подач. Коэффициент m (табл. 1) для этого насоса отличается от единицы всего на 1%. Увеличение числа наблюдений в процессе эксперимента приводит к уменьшению вероятностных ошибок. К таким опытам онжом эксперименты, результаты которых приведены в работах [4, 5, 6, 7]. В этих работах исследуется влияние вязкости и коэффициента быстроходности характеристики на насосов низким нормальной быстроходности. коэффициентом Степень вязкости ν и числа оборотов n для центробежных насосов разных n_s различна. Гидравлический КПД центробежного насоса возрастает за счет увеличения n_s , а механический КПД увеличивается за счет снижения потерь на дисковое трение.

На основании данных табл. 3 построен график, приведенный на рис. 10.

Из графика рис. 10 следует, что с увеличением n_s от 40 до 120 максимальный КПД при перекачке воды и более вязкой жидкости увеличивается. У центробежных насосов для перекачки вязких жидкостей обычно угол наклона лопаток на выходе из рабочего колеса $\beta_2 = 60^\circ$ (больше чем у обычных), d_2 уменьшают для уменьшения дисковых потерь, увеличивают число оборотов рабочего колеса n и коэффициент быстроходности n_s . При этом увеличивается КПД, увеличиваются значения Q, H по сравнению с насосами с меньшим n_s .

Исследованный нами центробежный насос консольного типа 4К-6 имел: внешний диаметр рабочего колеса $d_2 = 272$ мм, внутренний диаметр рабочего колес $d_1 = 100$ мм. Испытания проводились при n = 740; 980 и 1480 об/мин. Результаты испытаний и расчетов по формулам (3), (7) и (10) приводятся в табл. 4.

Табл. 3

Hacoc,	<i>п</i> об/мин	ν , cm ² /c	$\eta_{ m _{Makc}}$	n_s
	740	0,01	0,675	43,0
	980	0,01	0,685	51,5
4K-6	1480	0,01	0,698	45,3
4N-0	740	3,69	0,431	45,0
	980	3,69	0,406	56,0
	1480	3,69	0,357	51,0
8MC7×10	1475	0,01	0,73	65,5
8NIC /×10		2,48	0,38	66,1
	1450	0,01	0,82	118
		0,48	0,76	105
		1,0	0,72	102
HM2500-230		1,35	0,64	108
		2,5	0,59	102
		4,45	0,50	105
		6,6	0,42	114

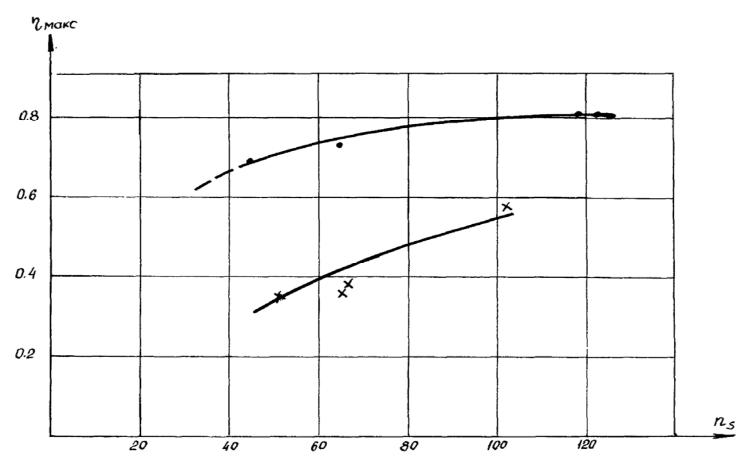


Рис. 10 Зависимооть 't_{такс}*f(ns) при работе на воде насосов 4K-6, 8MC7x10 и HM 2500-230 при n = 1475-1480 објмин • — водо x- √=2,48-3,69 cm²/c

На рис. 11 приведены графики зависимости значений оптимального КПД насоса 4К-6 от числа оборотов рабочего колеса насоса и вязкости перекачиваемой жидкости. При работе на воде η_{onm} остается практически постоянным, а при перекачке вязкой жидкости с увеличением числа оборотов от 740 до 1480 в минуту КПД уменьшается. Это в основном связано с увеличением гидравлических потерь и увеличением потерь на дисковое трение.

Табл. 4 Результаты расчетов для насоса 4К-6

	Оптимальные значения из экспериментов						Расчеты по формулам		
<i>n</i> , об/мин	·			на вязкой жидкости ν =3,69 см ² /с			(2)	(7)	(10)
	<i>Q</i> , дм ³ /сек	Н, м	η	<i>Q</i> , дм ³ /сек	Н, м	η	(3)	(7)	(10)
740	6,6	5,85	0,693	4,09	4,77	0,43	49,5	13,6	49
980	8,4	10,3	0,685	6,95	7,68	0,40	57	15,4	56
1450	13,2	25,8	0,698	8,06	18,37	0,357	53	14,6	52

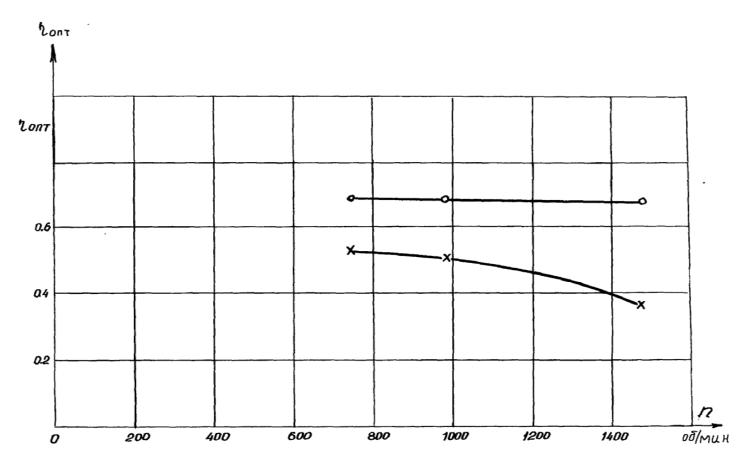


Рис. 11. Зависимость оптимального к.п.д. насоса 4к-6 от числа оборотов и вязкости перекачиваемой нефти

0-вода; x- индустриальное масло при $t=20^{\circ}$ С, $\sqrt{3.69}$ см²/с

5. НАПОР НАСОСА H_{θ} ПРИ НУЛЕВОЙ ПОДАЧЕ (Q=0)

У различных авторов есть расхождения при оценке влияния вязкости жидкости на величину напора при нулевой подаче [13, 14, 15, 16].

В табл. 5 приводятся результаты экспериментов по определению напора H_0 при Q=0 для насосов марок 6MC6×9 и 8MC7×10 [14].

У секционных насосов при Q=0 из-за имеющихся в конструкции направляющих аппаратов величина $H_0 \neq const.$ Этот факт отмечался ранее в работах [12, 14, 16], но в этих работах не обобщены опытные данные и нет зависимости вида

$$\frac{H_{0\nu}}{H_{0e}} = f\left(\frac{v_H}{v_e}\right).$$

Уменьшение напора H_0 с увеличением вязкости перекачиваемой жидкости при Q=0 Р.И.Шищенко [14] объясняет тем, что вращение рабочего колеса при закрытом выкиде создает интенсивное движение в каналах колеса, в направляющем аппарате или кольцевом диффузоре, на поддержание этого движения тратится часть энергии даже при закрытой выкидной задвижке, когда имеет место только утечки через зазор.

На рис. 12 приводится график зависимости $\frac{H_{0\nu}}{H_{0e}} = f \left(\frac{v_H}{v_e} \right)$, составленный по итогам испытаний насосов типа МС и К.

При применении теории подобия к центробежным насосам, например, при пересчете характеристик с воды на более вязкую жидкость, вопрос изменения начального напора H_0 имеет теоретическое и практическое значение.

В работах [12, 13, 17, 18] указывается, что напор H_0 , развиваемый спиральным центробежным насосом, на режиме холостого хода, т.е. при Q=0 не зависит от вязкости перекачиваемой жидкости. Ссылаясь на работу [17], в работе [18] на странице 43 отмечается, что в отличие от центробежных насосов со спиральным выводом с односторонним входом жидкости, при работе центробежного насоса со спиральным отводом с двусторонним входом жидкости на режиме Q=0, напор H_0 несколько снижается с увеличением вязкости жидкости. Заключение, сделанное в работе

 $\label{eq:Tadpi}$ Экспериментальные результаты по определению напора H_0 при Q=0

Насос	Плотность нефти,	Вязкость нефти,	Напор H_0 , при $Q = 0$, м			
	нефти, ρ, кг/м ³	ν, cm ² /c	вода	нефть		
6MC6×9	880	0,68	420,0	404,4		
8MC7×10	845	0,62	680,0	667,4		
8MC7×10	905	1,32	680,0	630,3		
8MC7×10	912	2,48	680,0	605,3		

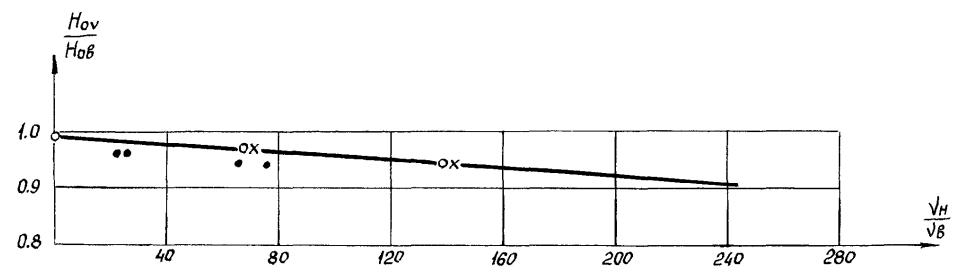


Рис. 12 График зависимости $\frac{H_{oV}}{H_{oB}} = f(\frac{V_H}{V_B})$

0- насос 8MC-7×10; x- насос 6MC-6×9; • - насос 2K-6

[18] по опытам работы [17], подтверждается экспериментальными исследованиями, результаты которых приведены в работе [20]. Из этой работы следует, что при Q = 0 напор H_0 насоса 8HD6×1 (насос со спиральным отводом, с двусторонним входом жидкости), несколько уменьшается с увеличением вязкости (при $v = 0.17 \text{ cm}^2/\text{сек}$, $H_0 = 108 \text{ m}$, а при $v = 1.32 \text{ cm}^2/\text{сек}$, $H_0 = 100 \text{ m}$).

Это снижение напора можно объяснить тем, что у центробежных насосов со спиральным отводом и с двусторонним входом жидкости два конструктивно необходимых зазора между корпусом и ступицей входного отверстия рабочего колеса, а у центробежного насоса со спиральным отводом и односторонним входом один такой зазор. Ширина зазоров примерно одинакова, а их площадь поперечного сечения будет больше у первых насосов. Поэтому при закрытой задвижке на выкиде из насоса утечки через зазоры будут больше у центробежных насосов с двусторонним входом жидкости.

С увеличением утечек потребуется больший напор на циркуляцию жидкости внутри насоса. Что приводит к уменьшению H_0 .

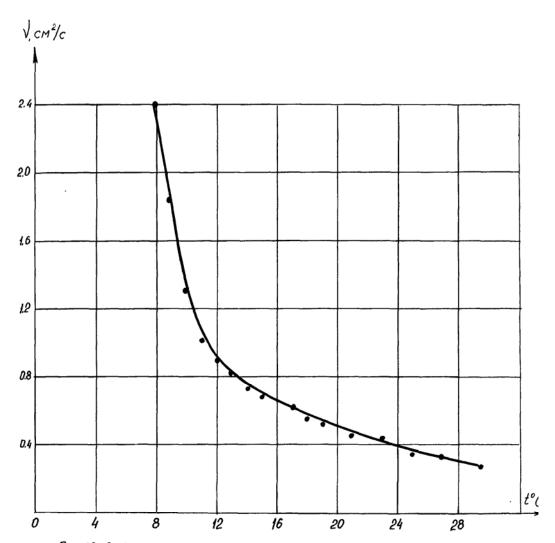


Рис. 13. Зависимость кинематической вязкости нефти пробы 1 от температуры

Парафинистая нефть f = 926 кг/м³; вода-23,7%; температура застывания парафина 20°С

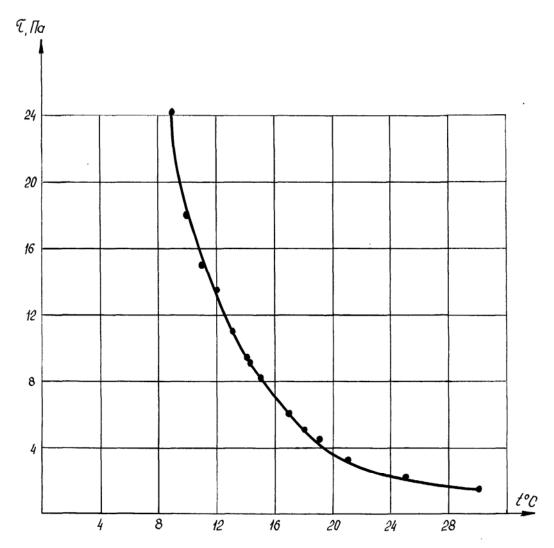
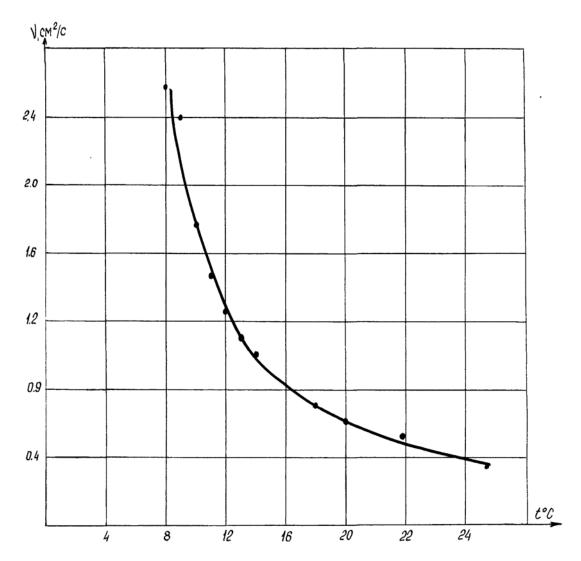


Рис. 14 Зависимость T_0 =f(t) нефти пробы 1

6. РАБОТА ЦЕНТРОБЕЖНОГО НАСОСА КОНСОЛЬНОГО ТИПА 2К-6 ПРИ ПЕРЕКАЧКЕ ПАРАФИНИСТЫХ НЕФТЕЙ

В литературе отмечается, что применение центробежных насосов с $n_s \le 80$ для перекачки вязких жидкостей экономически не оправдано. Однако, благодаря своей компактности и малым габаритам такие насосы все же находят применение. В том числе во внутрипромысловой практике при сборе и транспорте нефти.


К системе промыслового сбора и транспорта парафинистых нефтей можно отнести опыты, изложенные в работе [22]. Некоторые заимствованы в данной работе при результаты этих опытов изложении данного главы с использованием предложенной нами результаты Ha основании экспериментов, методики. в работе [22], выявлена возможность применения приведены насосов с малой быстроходностью (n_s≤60) центробежных перекачки парафинистых нефтей при температуре ниже температуры застывания, при условии обеспечения подвода нефти к насосу. При этом по рекомендации, приведённой в работе [23], целесообразно применять их, если оптимальный КПД при перекачке нефти, составляет не менее 50% от оптимального КПД в случае перекачки воды. В опытах работы [22] это условие соблюдается.

Парафинистые нефти относятся к неньютоновским жидкостям, которые обладают начальным напряжением сдвига τ_0 . На рис. 13, 14, 15, 16 приводятся графики зависимости кинематической вязкости и начало сдвига τ_0 от температуры для двух разных нефтей. Из графиков следует, что при температурах 8...12°C происходит резкое падение вязкости, а начало сдвига τ_0 постепенно уменьшается с 24 до 1,5 Паскаля. При этом температура увеличивалась с 10 до 30°C.

Характеристики насоса 2К-6 показаны на рис. 17, 18, 19, 20, 21, 22. Из графиков рисунков следует, что с увеличением вязкости оптимальный КПД уменьшается и смещается в сторону меньших подач. При Q = 0 напор H_0 меньше чем для воды.

Для центробежного насоса 2К-6 будет справедливо условие (13). Результаты расчетов по определению n_q , n_s , n_s' , m (условия 13) и H_0 приводятся в табл. 6.

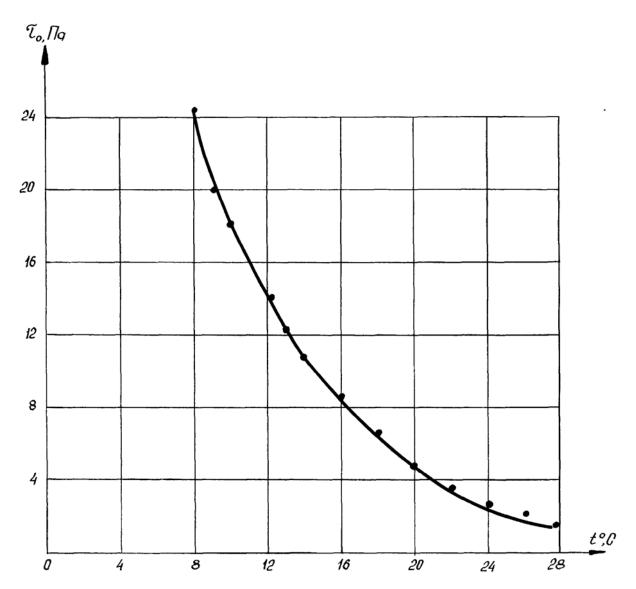
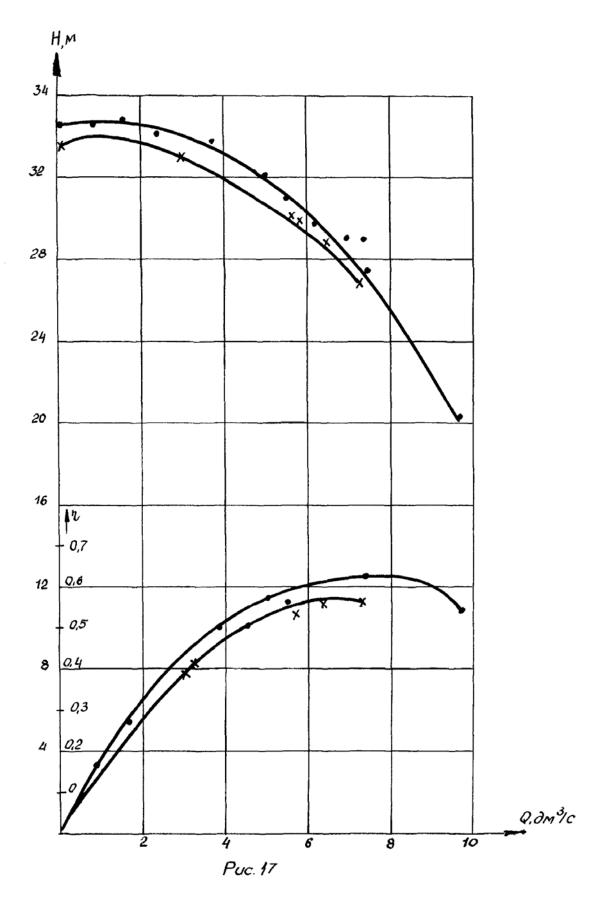
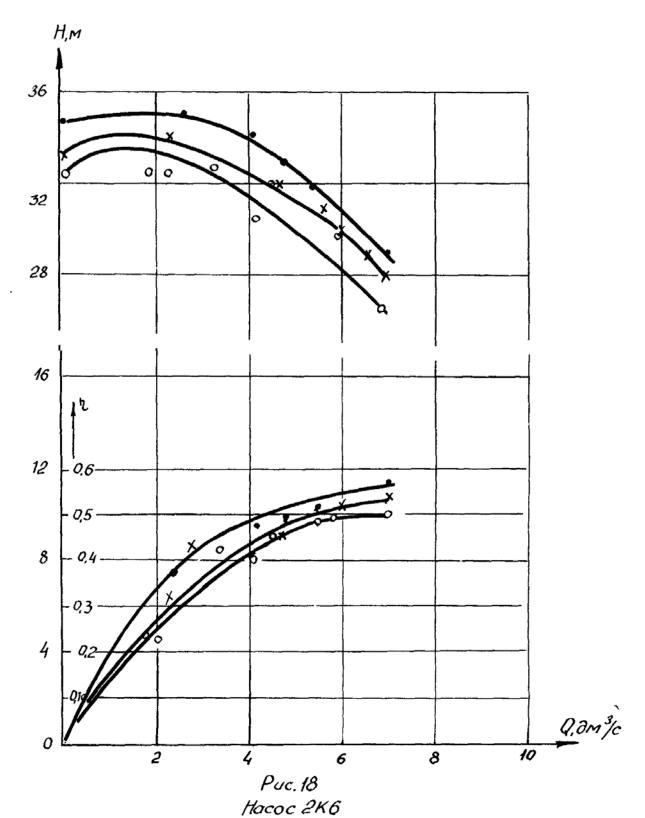
Нефть пробы 1 обезвоженная, а пробы 2 с содержанием воды.

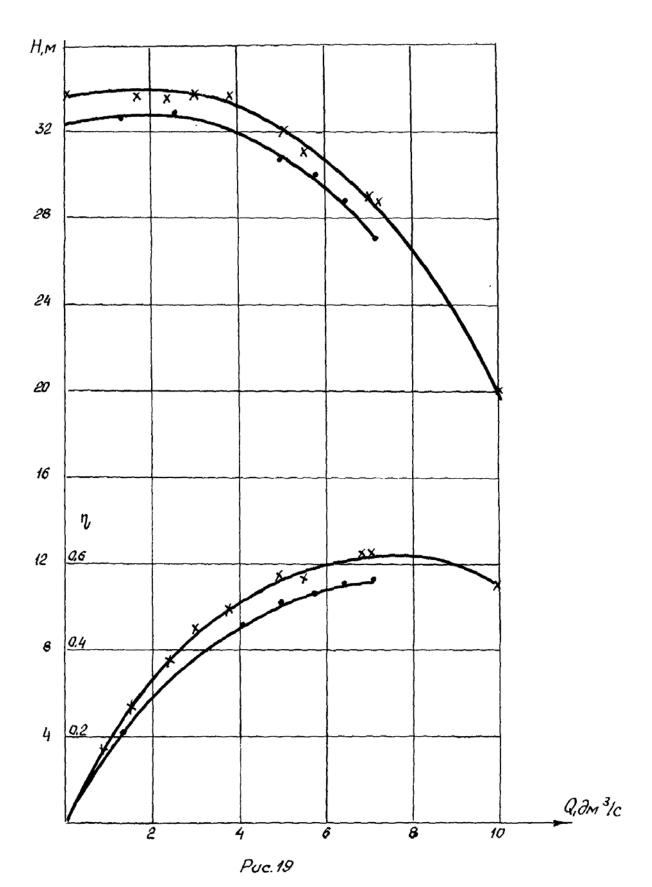
Puc.15. Зависимость V=f(t) нефти пробы 2

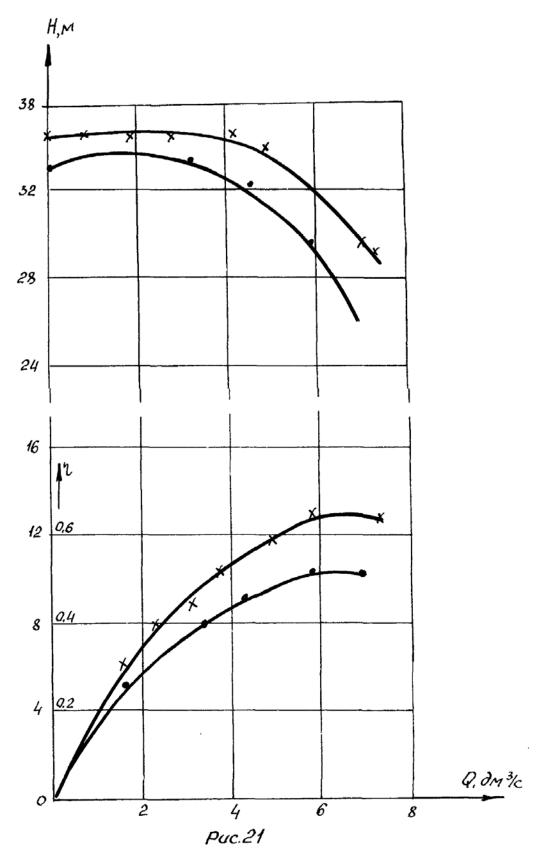
Порафинистая нефть

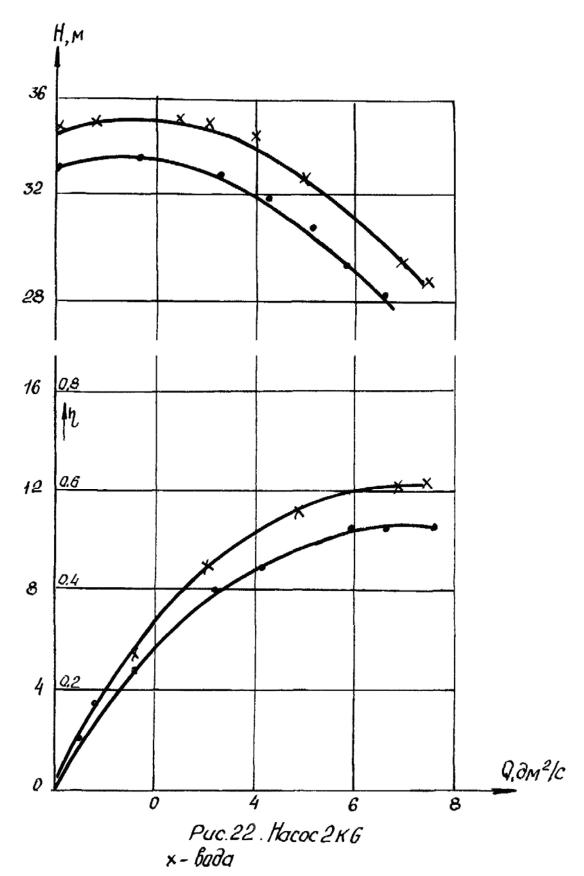
ho = 901кг/м 3 ; воды –2 %

темперотура застывания порафина $23^{\circ} \mathcal{C}$


Рис.16 Зависимость \mathcal{T}_o =f(t) нефти пробы 2


Насос 2К-6 • ~ вода x-нефть пробы1 p= 921ке/м ³ V= 9,28cм²/c


•- нефть пробы 1, $p = 926 \, \text{кг/m}^3$, $V = 0.45 \, \text{cm}^2/\text{c}$ X- нефть пробы 1, $p = 908 \, \text{кг/m}^3$, $V = 0.62 \, \text{cm}^2/\text{c}$ 0 - нефть пробы 2, $p = 909 \, \text{кг/m}^3$, $V = 0.82 \, \text{cm}^2/\text{c}$

Hacoc 2K-6
•- нефть пробы 1
р = 920 кг/м³
V = 0,22 см³/с
x-вода

Насос 2K-6 • - нефть t=14°C p=876 кг/м³, V=1.0 см²с ×- Вода t-ра застывания парафина 20°С

x - 000a •-нефть t=24°C p= 870 кг/м³ V=0,36 cm²/c t-pa застывания парафина 20°C

х - вода t-ра застывания парафина 20 $^\circ$ С

Из табл. 6 и 7 следует, что с увеличением вязкости жидкости коэффициент быстроходности уменьшается и уменьшается коэффициент m (13).

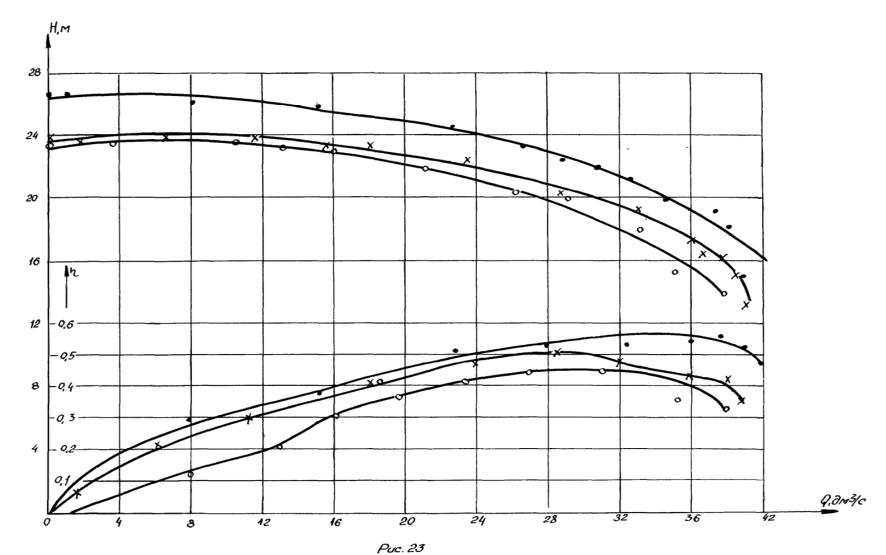
Начальный напор H_0 при перекачке вязкой жидкости по сравнению с водой несколько уменьшается. Объяснение этому было дано несколько выше.

Табл. 6 Результаты расчетов по определению $n_q,\ n_s,\ n_s^{'},\ m$ и H_0

t°C	Параметры жидкости		$Q_{onm},$ дм $^3/{ m c}$	H_{onm} , M	H_0 , M	Разность начальных	Коэффициенты			
i C	ρ , kg/m 3	v, cm ² /c	дм ³ /с	11 _{onm} , M	110, M	$H_0^B - H_0^\nu$		n_q	n_s	$n_{s}^{'}$
18	1000	0,01	7,35	29	34,67	-	-	19,9	72,7	59,1
30,2	920	0,22	7,14	27,5	33,65	1,02	0,98	20,3	71,2	60,9
29	921	0,28	7,32	27,38	33,27	1,4	1,004	20,7	73,0	62,7
20	926	0,50	7,04	28,9	32,07	2,9	0,94	19,6	68,3	59
15, нефть пробы 1	908	0,63	6,62	29,3	33,97	0,7	0,89	18,7	65	55,9
15, нефть пробы 2	909	0,90	5,88	29,9	32,79	1,88	0,84	17,8	61,3	53,2
20	870	0,36	6,75	28,8	33	1,6	0,98	19,5	71,3	56,9
14	876	1,0	6,8	27,2	33	1,6	0,97	19,3	70,3	57,7
130	870	0,29	7,08	28,2	33,6	1,0	1,004	20	73	57,6

Табл. 7 Отношение начального напора для насоса 2K-6 при работе на нефти к работе на воде

t, °C	ν, cm ² /c	Отношение вязкости нефти к вязкости воды	Отношение начального напора при работе на нефти к работе на воде
30	0,22	22	0,97
29	0,23	23	0,96
16	0,73	73	0,97
14	0,78	78	0,94
20	0,36	36	0,95
14	1,0	100	0,95
30	0,29	29	0,97


7. ИСПЫТАНИЯ ЦЕНТРОБЕЖНОГО НАСОСА 4HDB ПРИ *n*=1450 об/мин [24].

В работе [24] приведены результаты экспериментов, которые были тщательно проведены на оптимальном стенде с выполнением всех требований при испытании центробежных насосов. Для исключения влияния температуры на свойства нефти эксперименты завершались в течение часа. При такой продолжительности опытов температура нефти повышалась не более чем на 0,5°С. Потери от испарения сокращались повышением герметизации приемного и мерного баков. Результаты опытов нанесены на графики (рис. 23). Из графиков рис. 23 следует, что:

- 1. с увеличением вязкости перекачиваемой жидкости до 0,729 см²/сек КПД уменьшается и смещается в сторону меньших подач, эти испытания подтвердили, что нарушается условие (11);
- 2. начальный напор H_0 при Q=0 уменьшается с увеличением вязкости перекачиваемой жидкости. При $\nu=0.01 \,\mathrm{cm}^2/\mathrm{cek}$ $H_0=26.75 \,\mathrm{m}$, а при $\nu=0.729 \,\mathrm{cm}^2/\mathrm{cek}$ $H_0=23.48 \,\mathrm{m}$.

Для этого центробежного насоса рассчитанные значения коэффициентов n_q , n_s и n_s' с использованием данных табл. 9, приведены в табл. 10. Из табл. 10 следует, что эксперименты по испытанию насоса 4HDB на воде и двух разных по плотности и вязкости нефтей не подтвердили формулу пересчета (11) и для этого насоса следует пользоваться условием (13). Значение поправочного коэффициента m приводится в табл. 10.

Подача Q, дм $^3/c$ Q, дм 3 /с Q, дм 3 /с Напор H, м H, M $КПД, \eta$ H, M η η Нефть, $\rho = 882$ кг/м³, $\nu = 0.212$ см²/с Нефть, $\rho = 888$ кг/м³, $\nu = 0.729$ см²/с Вода, $\rho = 1000 \text{кг/м}^3$, $\nu = 0.01 \text{cm}^2/\text{c}$ 0 26,75 0 0 23,86 0 0 23,48 0 1.01 26,70 0,05 1,86 23,86 0,06 3,68 23,61 0.29 8,11 26.0 6,44 24,02 0,22 8,27 0,11 23,74 15,03 26,5 0,38 11,53 24,02 0,31 13,42 23,47 0,21 22,78 24,31 0,51 15,78 23,80 0,40 16,13 23,47 0,31 26,54 23,62 0,54 18,19 23,61 0,42 19,77 22,81 0,37 30,30 22,61 0,56 28,75 21,43 0,51 26,86 20,93 0,44 32,56 21,46 0,54 32,96 19,63 0,49 29,32 20,21 0,45 34,79 20,86 0,54 36,19 17,56 0,46 33,01 18,02 0,46 36,83 19,89 0,55 36,68 16,63 0,44 35,75 15,49 0,36 37,72 19,88 0,56 37,86 16,27 0,45 38,75 13,94 0,36 39,93 0,93 38,39 15,24 0,42 18,14 42,06 16,29 0,44 39,07 13,17 0,35

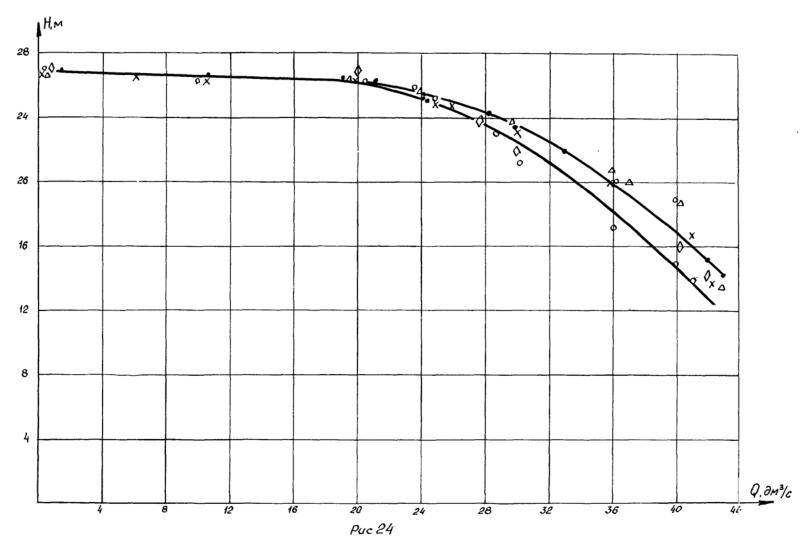
Hococ 4HDB; n = 145008/MUH• - 8080x - 145008/MUH• - 145008/MUHx - 145008/MUHy - 145008/MU

Табл. 9 Результаты расчетов для насоса 4HDB

Насос	n , об/мин	<i>р</i> , кг/м³	<i>V</i> , cм ² /с	<i>Q_{onm},</i> дм ³ /с	$H_{onm},$ M	КПД, η
		1000	0,01	37,72	19,88	0,56
4HDB	1450	882	0,212	28,75	20,43	0,51
		888	0,729	33,01	18,02	0,46

Табл. 10 Результаты расчетов для насоса 4HDB (продолжение)

Насос	N,	ρ,	V.		Коэффи	циенты	
	об/мин	$\kappa\Gamma/M^3$	cm ² /c	n_q	n_s	$n_S^{'}$	m
		1000	0,01	21,8	79,6	68,2	-
4HDB	1450	882	0,212	18,1	65,1	53,2	0,82
		888	0,729	21,4	78,1	63,1	0,98


8. РАБОТА ЦЕНТРОБЕЖНОГО НАСОСА ТИПА 4HDB ПРИ ПЕРЕКАЧКЕ БУРОВЫХ РАСТВОРОВ

В работе [26] эксперименты по испытанию насоса 4HDB проводились при перекачке буровых растворов (плотности от 1310 кг/м³ до 1530 кг/м³, вязкостью 4,8...7,5 сПз и τ_0 = 0,05...0,12г/см²)

Результаты испытаний в отмеченной работе представлены в виде графиков H = f(Q), где H дается в метрах водяного столба.

На выкиде насоса напор обычно представляется в метрах столба перекачиваемой жидкости. Это дает возможность проще определять полезную мощность насоса и его КПД, пользуясь характеристикой H = f(Q). На рис. 24 нами графики характеристик H = Q представлены с напором на выкиде насоса в метрах столба перекачиваемой жидкости. Из графиков следует, что до Q = 20 дм 3 /сек значения напора H, полученные при работе на воде и отмеченных буровых растворах, практически совпадают.

При Q > 20 дм 3 /сек напор, полученный при перекачке буровых растворов, начинает уменьшаться.

 Δ - boda ; • - bypoboú pacmbop , ρ = 1310 Ke/M3; ζ = 6,5cm , τ_0 = 0,053 e/cm²

x - bypobou pacmbop $p = 1370 \text{ k2/m}^3$; z = 7.5 cn; $z_0 = 0.073 \text{ z/cm}^2$ Δ - bypobou pacmbop $p = 1450 \text{ kz/m}^3$; z = 4.8 cn; $z_0 = 0.11 \text{ z/cm}^2$ c - bypobou pacmbop $p = 1530 \text{ kz/m}^3$; z = 6.3 cn, $z_0 = 0.126 \text{ z/cm}^2$ z = 1.26.8; z = 0.27.11; z = 1.27 m, z = 1.26.8; z = 1.27 m z = 1.27 m

9. ИССЛЕДОВАНИЕ ГИДРАВЛИЧЕСКИХ ПОКАЗАТЕЛЕЙ ЦЕНТРОБЕЖНЫХ НАСОСОВ ДЛЯ ПЕРЕКАЧКИ НЕФТИ ПО МАГИСТРАЛЬНЫМ ТРУБОПРОВОДАМ

В данном разделе использованы опыты, полученные при промышленных испытаниях центробежных насосов магистральных нефтепроводов. Эти опыты описаны в работах [27, 28, 29].

Эти опыты использованы нами для определения удельного числа оборотов, коэффициента быстроходности при перекачке воды и нефти. Ставилась задача выяснения выполнения условия (11) и (13), по методике предлагаемой нами. Это может внести определённую ясность для уточнения гидравлических показателей центробежных насосов типа НМП2500-74, НМ7000-210, 16HD10×1.

9.1. Исследование гидравлических показателей подпорного центробежного насоса НМП2500-74

Значения коэффициентов n_q , n_s и n_s приведены в табл. 11.

Для этого насоса условие (11) не может быть применимо, а условие (13) запишется в следующем виде:

$$m \cdot \frac{\sqrt{Q_1}}{H_1^{\frac{3}{4}}} = \frac{\sqrt{\rho}\sqrt{Q_2}}{H_2^{\frac{3}{4}}}$$

где $\rho=0.85$ (относительная плотность); Q_1 , H_1 - оптимальные значения подачи и напора при подаче воды, а Q_2 , H_2 для нефти (рис 25)..

9.2. Исследование гидравлических показателей центробежных насосов HM7000-210 и 16HD10×1.

Насос НМ7000-210 предназначен для перекачки нефти по магистральным трубопроводам. Насос с одним рабочим колесом двустороннего входа жидкости. Наружный диаметр рабочего колеса $d_2 = 480$ мм (номинальный размер). К насосу приложены сменные роторы с $0.5Q_{\text{ном.}}$ и $0.7~Q_{\text{ном.}}$ Результаты испытаний работы [28] приведены в табл. 12.

Характеристики насоса при d_2 = 480мм и d_2 = 240мм приведены на рис. 26 и 27.

Данные насоса со сменными роторами приводятся в табл. 13.

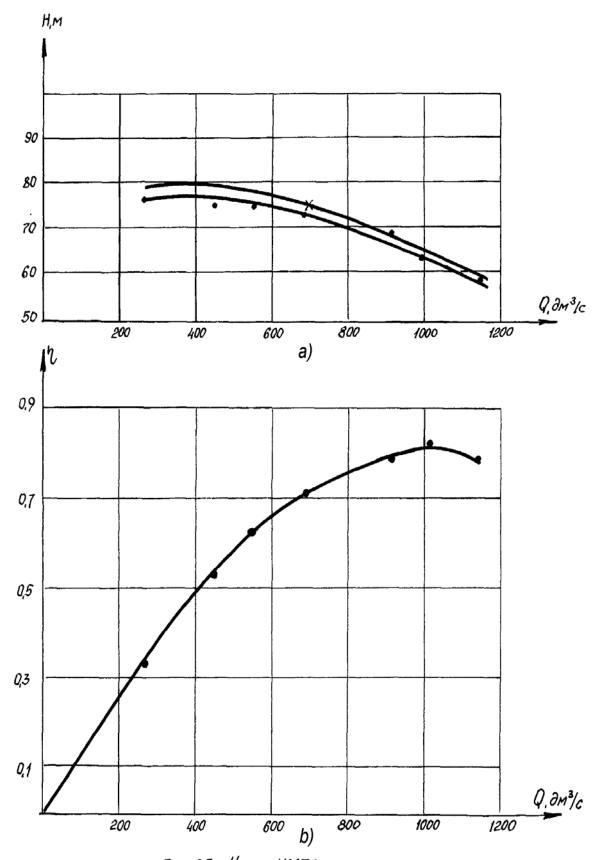

Насос, <i>п</i> об/мин	Жидк	сость	Коэффициенты					
	ρ , kg/m ³	v, cm ² /c	n_q	n_s	$n_{s}^{'}$	m		
НМП2500-	1000	0,01	23,3	85	73,2	-		
74 1000	857	0,1	31	104,3	89,5	1,23		

Табл. 12 Результаты испытаний работы насоса НМ7000-210

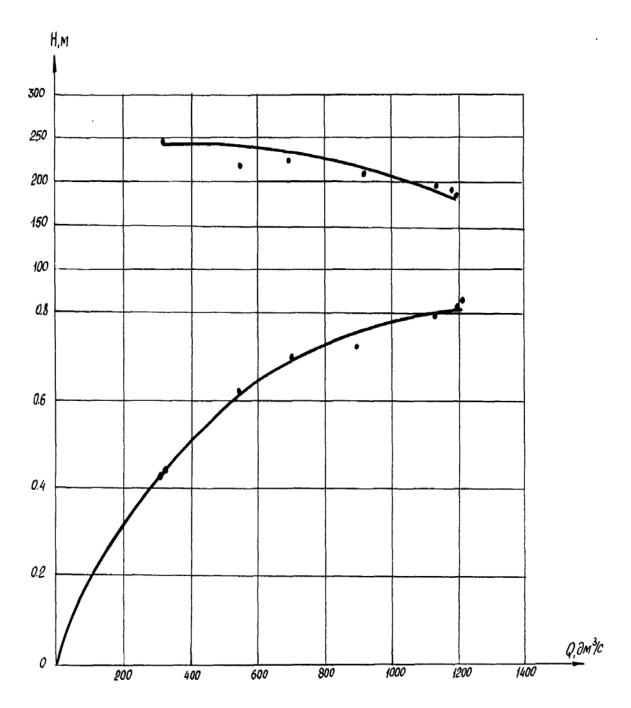
Параметры	при работе ни воде	При работе на нефти, $\rho = 800 \text{ кг/м}^3$, $v = 0.15 \text{ cm}^2/\text{c}$
Подача, дм ³ /с	1940	1940
Напор, м.ст.жидк.	208	208
п, об/мин	3000	3000
кпд	0,89	0,87

Табл.13 Результаты испытаний работы насоса НМ7000-210 со сменными роторами

co ememinin poropanin									
Параметры	Ротор	$0,5~Q_{\scriptscriptstyle HOM}$	Ротор 0,7 $Q_{{\scriptscriptstyle HOM}}$						
	При работе на воде	При работе на нефти $\rho = 800 \text{kг/m}^3$ $v = 0.15 \text{cm}^2/\text{c}$	При работе на воде	При работе на нефти $\rho = 800 \text{ кг/m}^3$ $v = 0.15 \text{ cm}^2/\text{c}$					
<i>п</i> , об/мин	3000	3000	3000	3000					
Подача, Q , дм 3 /с	970	970	1385	1385					
Напор, м. столба жидкости	215	214	205	200					
кпд	0,80	0,785	0,86	0,82					

Puc.25 Hacoc HMI12500-74

Характеристики модельного центробежного насоса $16\text{HD}10\times1$ при работе на воде и двух различных по вязкости нефтях показаны на рис. 28. Насос с двусторонним входом жидкости в рабочее колесо, $d_2 = 300\text{мм}$.


Анализ взаимного расположения кривых H-Q и $\eta-Q$ показывает, что при увеличении вязкости перекачиваемой жидкости напорные характеристики H-Q опускаются, с смещением оптимального КПД в сторону меньших подач. Для модельного насоса $16\text{HD}10\times1$ выполнимо условие (13).

Из табл. 14 следует, что центробежный насос НМ7000-210 при перекачки нефти плотностью до 860 кг/м³ и кинематической вязкостью до 0,15см³/сек в его гидравлических расчетов правомочно условие (11), а для модельного центробежного насоса 16HD10×1 следует пользоваться условием (13). При этом, как показали расчеты, для нефти вязкостью до $2.5 \text{ cm}^2/\text{сек}$ коэффициент m=0.96. Для центробежного насоса НМ7000-230 на рис. 30 показан график зависимости коэффициента быстроходности n_s подачи при OT уменьшении наружного диаметра рабочего колеса d_2 . Как видно из с увеличением подрезки (уменьшением диаметра d_2) 30 подача (Q_{HOM}) уменьшается, соответственно номинальная уменьшается коэффициент быстроходности n_s .

Коэффициент m из условия (13) практически остается постоянным при перекачки нефти вязкостью до 2,5 см²/сек.

Puc. 26 . Hacoc HM 7000-210• - нефть , $p = 860 \frac{K^2}{M^3}$, $V = 0.15 \frac{CM^2}{C}$

Puc. 27

HM 1000-210 с ротором 0,5·Qноль •- нефть р=860 кг/м³, V=0,5cm²/c

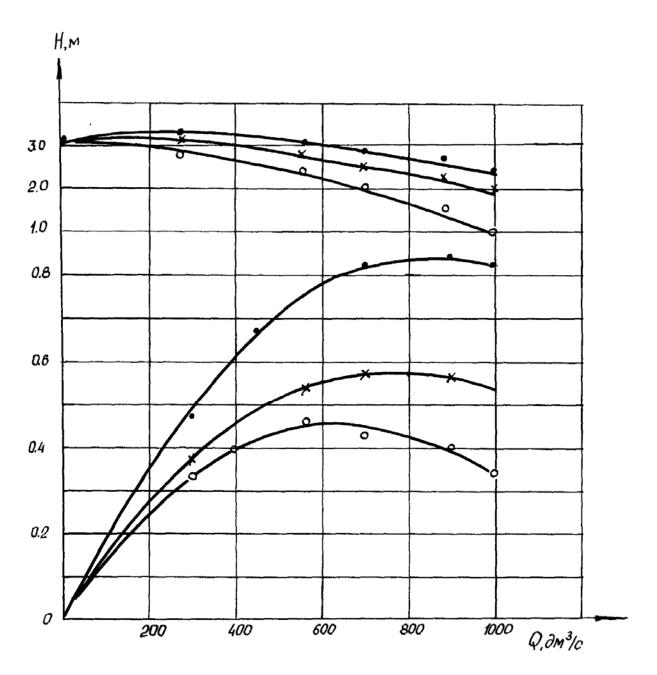


Рис. 28. Модельный насос 16HD10X1

► Boda
 X - Heqpmb
 P = 858 ^{K2}/_{M3}
 V = 1.0 cm²/c

0 - нефть $d_2 = 300$ мм $p = 860 \frac{K^2}{M^3}$ $N = 1450 a \delta / мин$ $V = 2.5 cm^2 / c$

Табл. 14 Определение коэффициентов n_q , n_s и $n_s^{'}$ центробежных насосов HM7000-210 и 16HD10×1.

				При ра- боте на			Коэфф	ициенты			
			При	нефти	7	n_q		$n_{\scriptscriptstyle S}$	n' _s		
Насос	Параметры	$Q/Q_{\scriptscriptstyle HOM}$	работе	$\rho = 860$	При ј	работе	При ј	работе	При ј	работе	m
		Z HOM	на воде	на воде $\kappa \Gamma/M^3$, $\nu = 0.5$ $c M^2/c$	на воде	на нефти	на воде	на нефти	на воде	на нефти	
1	2	3	4	5	6	7	8	9	10	11	12
	Q , дм 3 /с	1	1940	1940		95,9	350		298	298	1
	Н, м	1	208	208	95,9			350			
	<i>п</i> , об/мин	1	3000	3000	93,9	93,9	330				1
HM7000-	КПД	1	0,89	0,87							
210	Q , дм 3 /с	0,5	970	970							
	Н, м	0,5	215	214	37	37	135	135	116	116	1
	<i>п</i> , об/мин	0,5	3000	3000	3 /	31	133) 133	110	110	1
	КПД	0,8	0,8	0,785							

Продолжение табл. 14

1	2	3	4	5	6	7	8	9	10	11	12
	Q , дм 3 /с	0,7	1385	1385							
	Н, м	0,7	205	200							0,94
HM7000-210	<i>n</i> , об/мин	0,7	3000	3000	46	46,8	167,9	158,5	144	135	
	η	0,7	0,86	0,82							
				800					255		
	Q , дм 3 /с	1	900	$\rho = 858$		89	298	285		244	0,95
	Q, дм /с	1	900	<i>v</i> =1,0							
16HD10x1				cm^2/c	01.7						
ТОПОТОХТ	Н, м	1	27	630	81,7						
	<i>n</i> , об/мин	3000	3000	3000							
	η	1	0,86	0,50							
				650							
	Q , дм 3 /с	1	900	<i>р</i> =860кг/м							
				$v=2.5 \text{cm}^2/\text{c}$							
16HD10x1	Н, м	1	27	21	81,7	84,2	298,1	285	255,7	245	0,95
	<i>n</i> , об/мин	1	3000	3000							
	η	1	0,86	0,45							

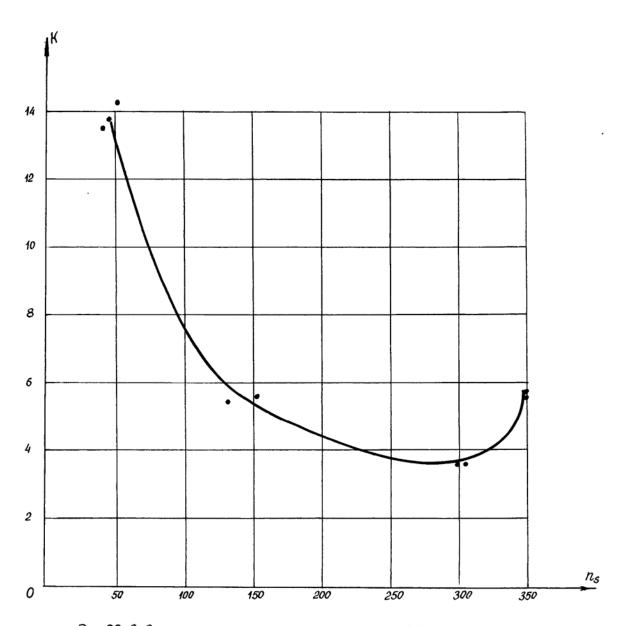


Рис .29 .Зависимость коэффициента к формулы (17) от коэффициента быстроходности ns для одноколесных центробежных насосов 4K-6; HM2500-230; 16 HD-10×1

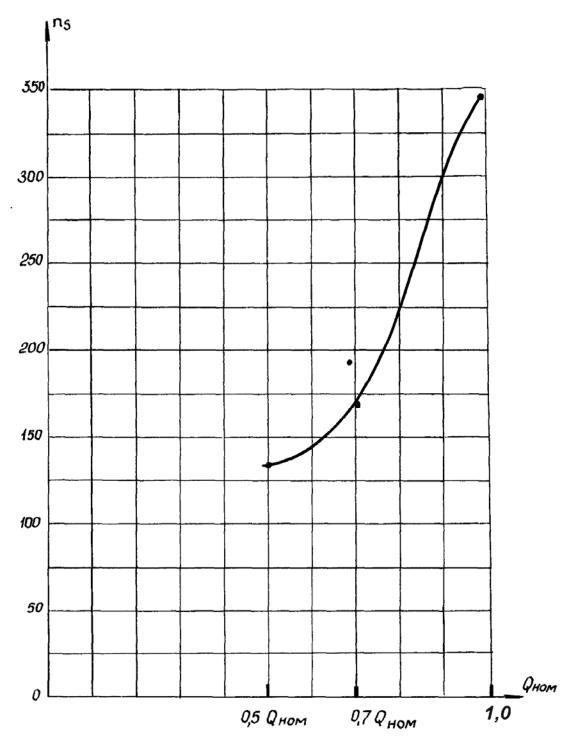


Рис.30. Зависимость п_s от подачи при подрезке рабочего колеса
Насос НМ 7000× 210

Список приложений:

Приложение П.1

- 1. Пересчет характеристик насосов при их работе на вязкой жидкости (по М.Д.Айзенштейну)
- 2. Некоторые выводы по вопросу перекачки вязких жидкостей (по М.Д. Айзенштейну)

Приложение П.2

Таблица заменяемости насосов

Приложение П. 3

Центробежные насосы типа К

Приложение П.4

Насосы типов Х

Приложение П.5

Насосы типов АХ

Приложение П.6

Центробежные моноблочные электронасосы типа КМ

Приложение Π . 7

Насосы типа Д

Приложение П.8

Многоступенчатые насосы типов ЦН, ЦНС, ЦНСс

Приложение П.9

Многоступенчатые насосы типа ЦНС (Г;К)

Приложение П.10

Многоступенчатые насосы типа ЦНС (H,M)

Приложение П.11

Насосы магистральных нефтепродуктопроводов

Приложение П.12

Насосы магистральные нефтяные подпорные

1. ПЕРЕСЧЕТ ХАРАКТЕРИСТИК НАСОСОВ ПРИ ИХ РАБОТЕ НА ВЯЗКОЙ ЖИДКОСТИ

(по М.Д. Айзенштейну [23])

При перекачке центробежным насосом жидкости, имеющей большую вязкости воды, характеристики вязкость, существенно изменяются в зависимости от величины вязкости перекачиваемой жидкости. С увеличением вязкости напор и произточке оптимального КПД уменьшаются водительность В основном из-за увеличения потерь на трение в проточной части насоса, а мощность возрастает из-за увеличения дисковых потерь трения.

При анализе работы центробежных насосов, перекачивающих вязкие жидкости, изменение характеристик при увеличении вязкости ориентировочно определяется при помощи поправочных коэффициентов для характеристик насоса, полученных на воде.

Данные испытаний центробежных насосов различных n_s в пределах от 50 до 130 на воде и вязких жидкостях представлены (рис. Π .1-1) в виде кривых поправочных коэффициентов K_O , K_H и K_n , построенных как функции от числа Рейнольдса. Число Рейнольдса может быть выражено уравнением

$$Re = \frac{Dc}{v}$$

где D – линейный размер, м; c — скорость, м/сек; v кинематическая вязкость, м²/сек.

Так как скорость c пропорциональна отношению $\frac{Q}{D_{\text{\tiny Auc}}^2}$, то число Re

быть выражено производительность может через эквивалентный диаметр рабочего колеса $D_{\mathfrak{s}\kappa e}$.

 M^3/ceK .

 $D_{{\scriptscriptstyle {\it 9KB}}}$ может быть определен из уравнения

$$\frac{\pi D_{\text{\tiny 3KB}}^2}{\Delta} = \pi D_2 b_2 k \tag{\Pi.1.2}$$

где D_2 – внешний диаметр колеса, м; b_2 – ширина канала на выходе,

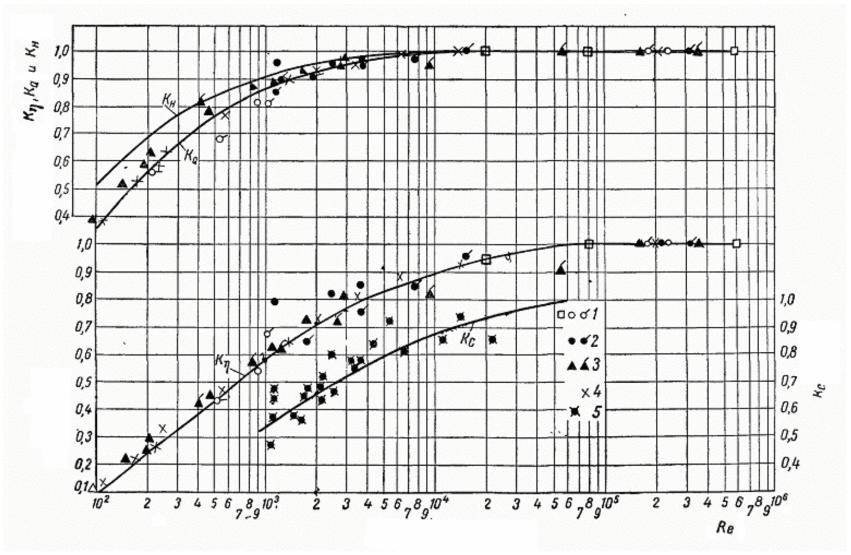


Рис. П.1-1. Коэффициенты пересчета характеристик с воды на вязкие жидкости. 1 и 5 – данные Айзенштейна; 2 – Суханова; 3 – Иппена; 4 – Степанова

м; k — коэффициент стеснения сечения лопатками на выходе, откуда

$$D_{3K6} = \sqrt{4\pi D_2 b_2 k} \tag{\Pi.1.3}$$

Приводимый ниже метод пересчета характеристик на вязкие жидкости по характеристикам насоса, испытанного на воде, основан на следующих предпосылках, подтвержденных опытными данными:

1) При постоянном числе оборотов характеристики насоса Q-H падают с увеличением вязкости таким образом, что коэффициент быстроходности остается неизменным в точке оптимального КПД, т.е. выполняется условие:

$$\frac{Q_1}{Q_2} = \left(\frac{H_1}{H_2}\right)^{\frac{3}{2}} \tag{\Pi.1.4}$$

Здесь индексы $\ll 1$ » и $\ll 2$ » относятся к жидкостям различной вязкости.

- 2) При постоянном числе оборотов и переменной вязкости характеристика Q-H падает с увеличением вязкости, но напор при нулевой производительности остается неизменным; таким образом, крутизна характеристик Q-H насоса увеличивается с увеличением вязкости.
- 3) При работе насоса с постоянным числом оборотов и перекачке вязкой жидкости увеличение потребляемой мощности остается тем же самым по абсолютной величине для широких пределов изменения производительности.
- 3) Законы подобия сохраняют свое действие для случая перекачки жидкости любой вязкости; вместе с тем результаты пересчета будут занижены при переходе от меньших чисел оборотов к большим, так как число Re возрастет при больших оборотах, и, следовательно, возрастут также коэффициенты K_O , K_H и K_η . При пересчете характеристик с больших оборотов на меньшие результаты будут завышены в сравнении с опытными данными.

Параметры насоса на вязкой жидкости для оптимального режима могут быть определены как

$$Q_{v} = K_{Q}Q_{g}$$

$$H_{v} = K_{H}H_{g}$$

$$\eta_{v} = K_{n}\eta_{g}$$

Коэффициенты K_O , K_H и K_η , должны быть взяты по кривым на рис. П.1-1, построенным исходя из опытных данных в зависимости от Re, выраженным уравнением (П.1.1).

На рис. П.1-2 произведено сравнение характеристики насоса, работающего на воде (1) и вязких жидкостях (2) и (3).

В виду того, что потери на дисковое трение увеличиваются при заданном напоре и, следовательно, заданной окружной скорости в значительно большей степени с увеличением диаметра, чем с возрастанием числа оборотов насоса, то при перекачке вязких для увеличения КПД. необходимо стремиться жидкостей увеличению числа оборотов, т.е. применять насосы с большим коэффициентом быстроходности. Поэтому для центробежных насосов, перекачивающих вязкие жидкости, рекомендуется коэффициент быстроходности не ниже $n_s = 85$. Так как утечки через уплотнения в центробежных насосах, перекачивающих вязкие жидкости, незначительны, то длину уплотнительных колец целесообразно уменьшить для уменьшения потерь на трение; с этой же целью желательно и диски рабочих колес выполнять тонкими.

С увеличением вязкости всасывающая способность насоса ухудшается. Однако в настоящее время нет достаточных экспериментальных данных для вывода зависимости между допустимой высотой всасывания при работе насоса на воде и при перекачке им вязких жидкостей.

2. НЕКОТОРЫЕ ВЫВОДЫ ПО ВОПРОСУ ПЕРЕКАЧКИ ВЯЗКИХ ЖИДКОСТЕЙ (по М.Д. Айзенштейну [23])

- 1. При перекачке вязких жидкостей снижаются производительность, напор и КПД насоса и увеличивается потребляемая мощность.
- 2. При малых вязкостях жидкости КПД насоса снижается главным образом вследствие увеличения потерь па дисковое трение.
- 3. Указанное влияние вязкости на снижение Q, H и η менее сказывается для насосов большей производительности.
- 4. При одинаковых числах оборотов и удельной быстроходности насос, имеющий максимальный КПД для воды, даст лучшие показатели и при перекачке вязких жидкостей.

- 5. При больших вязкостях и сравнительно небольшой производительности вследствие низкого КПД насоса происходит выделение тепла, и температура жидкости в насосе повышается. С нагревом жидкости уменьшается ее вязкость, вследствие этого несколько уменьшаются и потери в насосе.
- 6. Ввиду того, что потери на дисковое трение при заданной окружной скорости увеличиваются в гораздо больший степени с увеличением внешнего диаметра рабочего колеса, чем с увеличением числа оборотов насоса, при перекачке вязких жидкостей, для увеличения КПД необходимо стремиться к увеличению числа оборотов и применять насосы с возможно большей удельной быстроходностью.
- 7. При перекачке вязких жидкостей центробежными насосами последние следует применять в диапазоне удельной быстроходности $n_s = 85...100$.
- принятие $n_s > 100$ сопровождается значительным увеличением числа ступеней в насосе, а следовательно, и соответствующим усложнением конструкции отливок корпуса насоса и, наоборот, принятие $n_s < 85$ влечет увеличение диаметра рабочих внешнего колес значительным co затрачиваемой увеличением мощности на преодоление дискового трения, так как эта мощность пропорциональна Dy.
- 9. Допустимая предельная вязкость жидкости при перекачке вязких нефтепродуктов зависит от размера насоса. Насосы большего размера, т.е. большей производительности, позволяют вести перекачку жидкостей большей вязкости (см. рис. П.1-3).
- 10. При небольших величинах вязкости жидкости напор может несколько возрасти по сравнению с напором насоса, перекачивающего воду вследствие возможного уменьшения поджатия потока и частично из-за нарастания напора под влиянием увеличения трения дисков рабочих колес.
- 11. Для некоторых насосов с рабочим колесом с полным внешним диаметром напор при Q=0 не зависит от вязкости, но для колес с обточенным внешним диаметром при Q=0 с увеличением вязкости напор уменьшается по сравнению с напором при перекачке воды.
- 12. При пересчете характеристики насоса, перекачивающего

вязкие жидкости, с меньших оборотов на большие результаты пересчета будут занижены в сравнении с опытными данными. Это происходит вследствие того, что число Re при больших оборотах насоса будет больше числа Re при меньших оборотах, и, следовательно, величины коэффициентов K_Q , K_H и K_η также будут больше при больших числах оборотов. При пересчете с больших оборотов на меньшие результаты пересчета будут завышены в сравнении с опытными данными.

13.С увеличением вязкости всасывающая способность насоса ухудшается.

Примечания авторов пособия:

- 1) Метод Айзенштейна показывает хорошие результаты при пересчете для оптимальной подачи насоса, а при $Q < Q_{onm}$ и $Q > Q_{onm}$ метод даёт значительные погрешности.
- 2) В методе Айзенштейна используется число Re, в которое входит всего один характерный размер D, однако у центробежного насоса несколько важных геометрических параметров размеров, что необходимо учитывать при пересчете характеристик

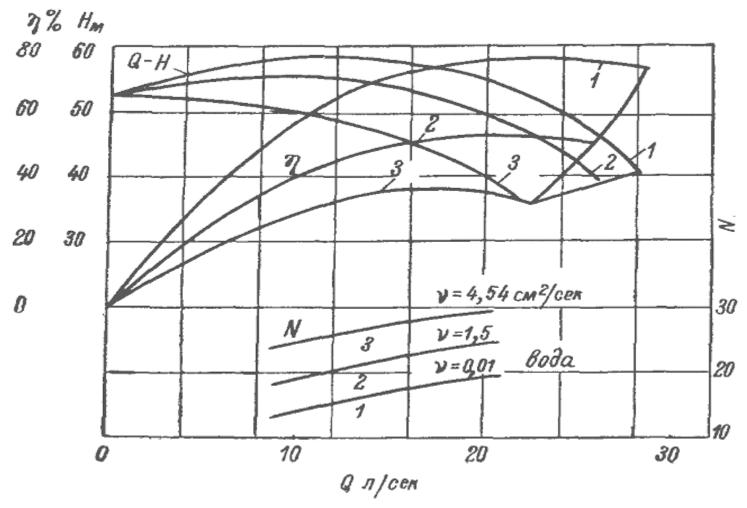


Рис. П.1-2. Сравнение характеристик насоса, работающего на воде (1) и на вязких жидкостях (2 и 3).



Рис. П.1-3. Области применения центробежных и поршневых насосов в зависимости от производительности и вязкости перекачиваемого продукта.

1 — максимальный допустимый предел применения центробежных насосов, 2 — рекомендуемый предел применения центробежных насосов ($\eta_{\textit{нефть}} = \eta_{\textit{вода}} \cdot 0,7$).

приложение п. 2

ТАБЛИЦА ЗАМЕНЯЕМОСТИ НАСОСОВ [30]

Табл. П.2

Консольные насосы

с 1973 года	с 1982 года	с 1990 года
1.5K-6	K 8/18	К 50-32-125
1.5KM-6	KM 8/18	KM 50-32-125
2K-6	К 20/30	К 50-32- 125
2KM-6	KM 20/30	К 65-50-160
2K-9	K 45/30	KM 65-50-160
3K-6	K 45/55	К 80-65-160
3KM-6	KM 45/55	К 80-50-200
4K-12	К 90/35	KM 80-50-200
4KM-12	KM 90/35	К 100-80-160
4K-8	К 90/55	KM 100-80-160
4KM-8	KM 90/55	К 100-65-200
4K-6	К 90/85	KM-100-65-200
4KM-6	KM 90/85	К 100-65-250
6KM-12	К 160/20	KM 100-65-250
6K-8	К 160/30	К 150- 125-250
8K-12	К 290/30	KM 150-125-250

Герметичные насосы

с 1973 года	с 1982 года	с 1990 года
ЦНГ-70М-1	1,5ХГ-6К-2,8	1ЦГ6,3/20К-1,1 1ЦГ6,3/32К-2,2
ЦНГ-70М-2	1.5XΓ-6X3-K-4	1ЦГ6,3/32К-2,2
ЦНГ-68	2ХГ-3К-14	1ЦГ12,5/50К-4 2ЦГ 25/50К-5.5
ЦНГ-69	3ХГ-69-14	1ЦГ25/80К-11
ЦНГ-71	4ХГ-12К-14	4ЦГ50/50К-11
ЦНГ-70М-1	1,5ХГ-6К-2,8	1ЦГ6,3/20К-1,1 1ЦГ6,3/32К-2,2
ЦНГ-70М-2	1.5XГ-6X3-К-4	1ЦГ6,3/32К-2,2
ЦНГ-68	2ХГ-3К-14	1ЦГ12,5/50К-4 2ЦГ 25/50К-5.5

Продолжение табл. П.2 Горизонтальные насосы

с 1973 года	с 1982 года	с 1990 года
5НДВ	Д 200-36	Д 200-36
4НДВ	Д 200-95	1Д 200-90
6НДВ	Д 320-50	1Д315-50
6 НДС	Д 320-70	1Д315-71
10Д6	Д 500-65	1Д 500-63
8НДВ	Д 630-90	1Д 630-90
12Д9	Д 800-57	1Д 800-56
12 НДС	Д 1250-65	1Д 1250-63
14Д6	Д 1250-125	1Д 1250-125
14 НДС	Д 1600-90	1Д 1600-90
16НДВ	Д2000-21	АД 2000-21 -2
20Д6	Д 2000-1 00	АД 2000- 100-2
18 НДС	Д 2000-62	АД 2500-62-2
20НДВ	Д 3200-33	АД 3200-33-2
20 НДС	Д 3200-75	АД 3200-75-2
22 НДС	Д 4000-95	АД 4000-95-2
24НДВ	Д 5000-32	АД 6300-27-3
24 НДС	Д 6300-80	АД 6300-80-2

Продолжение табл. П.2

Химические насосы

с 1973 года	с 1982 года	с 1990 года
1.5X-6	X8/18	X 50-32-125
2X-9	X20/18	X 65-50-125
2X-6	X20/31	X 65-50- 160
3X-9	X45/31	X 80-65-160
3X-6	X45/54	X 80-50-200
4X-12	X90-33	X 100-80-160 .
4X-9	X90/49	X 100-65-200
4X-6	X90/85	X 100-65-250
_	X90/140	X 100-65-315
6X-9	X 160/29	X 150-125-315
5X-12	X 160/49	X 150-1 25-400
8X-12	X280/29	X 200-150-315
_	X3/40	AX 40-25-160
1,5X-4	AX8/30	AX 50-32-160
_	X8/60	AX 50-32-200
2X-6	AX20/31	AX 65-50-160
2X-4	AX20/53	AX 65-40-200
3X-9	AX45/31	AX 100-65-315
3AX-6	AX45/54	AX 100-65-400
_	AX90/19	AX 125-80-250
4AX-12	AX90/33	AX 125- 100-3 15
4AX-9	AX90/49	AX 125- 100-400
_	AX280/42	AX 200- 150-400
_	AX500/37	AX 250-200-315
_	АХП8/40	АХП50-32-200
_	АХП20/31	АХП65-50-160
_	АХП45/54	АХП 100-65-400

Сточно-массные насосы

с 1973 года	с 1982 года	с 1990 года
ΦΓ 14,5/10	СД 16/10	CM 80-50-200/4
ΦΓ 25, 5/14,5	СД 25/14	CM 100-65-200/4
ΦΓ 16/27	СД 16/25	CM 80-50-200a/2
_	СД 32/40	CM 80-50-200/2
ΦΓ57,7/9,5	СД 50/10	CM 100-65-200/4
ΦΓ51/58	СД 50/56	CM 100-65-200/2
ΦΓ81/18	СД80/18	CM 125-80-315a/4
ΦΓ 81/31	СД 80/32	CM 125-80-315/4
ΦΓ 11 5/38	СД 100/40	CM 100-65-200/2
ΦΓ 144/46	СД 160/45	CM 150-125-315/4
ΦΓ 2 16/24	СД 250/22,5	CM 150-125-3153/4
ΦΓ 450/22, 5	СД 450/22,5	CM 250-200-400/6
ΦΓ 450/57,5	СД 450/56	CM 200- 150-5003/4
ΦΓ 450/95	СД 450/95	CM 200- 150-500/4
ΦΓ 800/33	СД 800/32	CM 250-200-400/4
16ФВ-18	ФВ2700/26.5	СДВ2700/26,5
24ФВ-13	ФВ4000/28	СДВ4000/28
26ФВ-22	ФВ7200/29	СДВ7200/29
3ОФВ-17	ФВ9000/45	СДВ9000/45
ΦΓ 14,5/10	СД 16/10	CM 80-50-200/4
ΦΓ 25, 5/14,5	СД 25/14	CM 100-65-200/4
ΦΓ 16/27	СД 16/25	CM 80-50-200a/2
_	СД 32/40	CM 80-50-200/2
ΦΓ57,7/9,5	СД 50/10	CM 100-65-200/4
ΦΓ51/58	СД 50/56	CM 100-65-200/2
ΦΓ81/18	СД 80/18	CM 125-80-315a/4
ΦΓ 81/31	СД 80/32	CM 125-80-315/4

приложение п.3

ЦЕНТРОБЕЖНЫЕ НАСОСЫ типа К

Насосы типа К – центробежные, консольные, одноступенчатые с горизонтальным осевым подводом жидкости к рабочему колесу (рис. П.3-1) [33]. Предназначены перекачивания в стационарных условиях чистой воды (кроме морской) с pH = 6...9, температурой от 273 до 358 К и других жидкостей, сходных с водой по плотности, вязкости и химической активности, содержащих твердые включения по объему не более 0,1% и размером до 0,2 мм. Используются в водоснабжения городского системах И отопления коммунального хозяйства, ДЛЯ орошения, ирригации осушения. Не допускаются установка и эксплуатация насосов во взрыво- и пожароопасных производствах и использование их для перекачивания горючих и легковоспламеняющихся жидкостей, а также размещение в жилых зданиях.

На сводном графике полей Q-H для насосов типа К (рис. Π .3-2) сплошной линией показаны серийно выпускаемые насосы, пунктирной — насосы, поставляемые по заказу. По подаче и напору на сводном графике полей Q-H предварительно выбирают насос требуемого типоразмера. По графической характеристике определяют необходимый диаметр рабочего колеса насоса, кривая напора которого должна проходить через точку заданных параметров по подаче и напору или быть несколько выше ее.

Технические характеристики насосов типа К приведены в табл. П.3-1, а габаритные и присоединительные их размеры в табл. П. 3-2

Материал деталей проточной части — чугун СЧ20; защитной втулки — сталь 45.

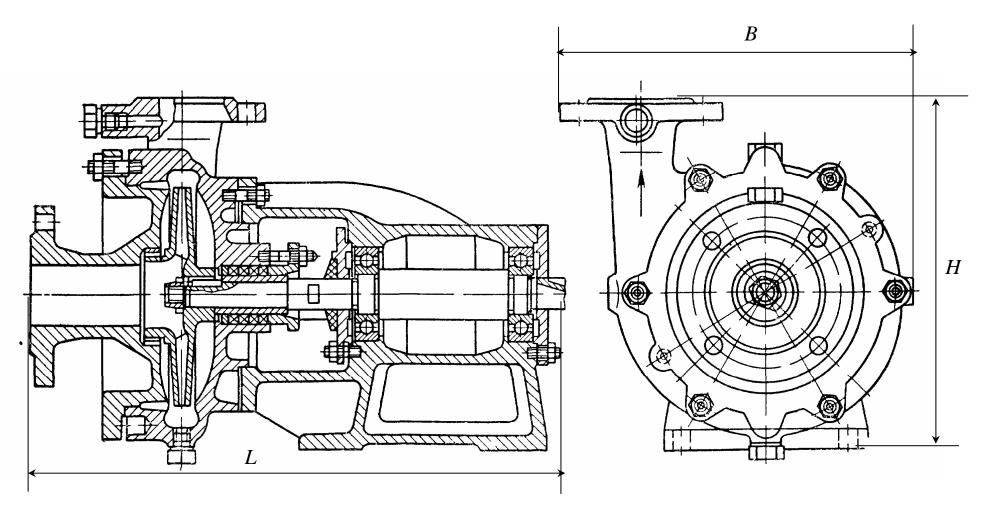


Рис. П.3-1.. Насос типа К

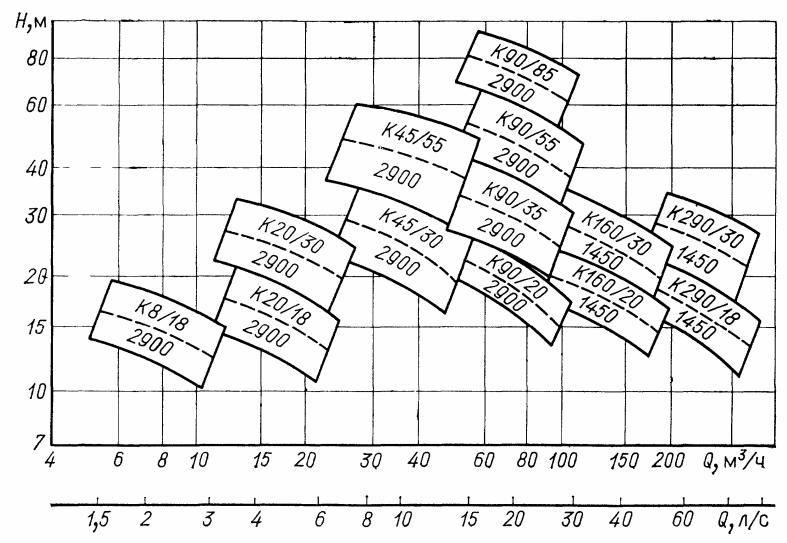


Рис.П. 3-2. Сводное поле характеристик центробежных насосов К

Табл. П.3-1

Технические характеристики насосов типа К

	11 10011110 214	· · · · · · · · · · · · · · · · · · ·	_		111114 11	
Типоразмер	Подача, м ³ /ч макс. номин. мин.	Напор, м	Частота вращения, об/мин	Мощность двигателя,, кВт	Допускаемый кавитационный запас, м, не более	КПД, %, не менее
K 8/18	12 8 6	14 18 19	2900	1,5	3,8	53
K 20/30	28 20 13	24 30 33	2900	4	3,8	64
K 45/30	58 45 28	25 30 35	2900	7,5	4,3	70
K 45/30a	54 35 28	19 22,5 35	2900	5,5	4,3	70
K 90/20	110 90 56	26 20 26	2900	75	5,2	78
K 80-50-200	68 50 36	44 50 54	2900	15	3 5	65
K 80-65-160	36 50 63	34 32 27	2900	7,5	4	70
K 100-80-160	132 100 65	28 32 36	2900	15	4,5	77
K 100-65-200	140 100 60	42 50 56	2900	30	4 5	72
K 100-65-250	145 100 74	67 80 82	2900	45	4,5	67
K 160/30	210 160 110	24 30 34	1450	30	4,2	75
K 150-125-315	250 200 130	27 32 35	1450	30	4	76
K 290/30	360 290 200	26 30 34	1450	45	4,2	82
'K 200-150-315	370 315 230	28 32 34	1450	45	4	81

 $\mbox{Табл. Π. $3-2$}$ Габаритные и присоединительные размеры насосных агрегатов \mbox{K}

Типоразмер	Длина, мм	Ширина, мм	Высота, мм	Внутр. диаметр всас. патрубка, мм	Внутр. диаметр напор. атрубка, мм	Масса, кг
К 8/18	768	257	321	40	32	64
К 20/30	932	287	335	50	40	85
K 45/30	1030	320	375	50	40	131
K 45/30a	990	320	375	50	40	102
К 90/20	1030	320	375	80	50	135
К 80-50-200	1127	458	485	80	50	230
К 80-65-160	942	390	410	80	65	136
K100-80-160	1245	458	485	100	80	270
К 100-65-200	1310	498	540	100	65	376
К 100-65-250	1390	568	605	100	65	485
K 160/30	1535	515	585	150	100	435
К 150-125-315	1380	525	640	150	125	427
К 290/30	1645	575	630	200	125	550
К 200-150-315	1665	785	600	200	150	570

насосы типов х

Насосы типов Х (рис. П.4-1) – горизонтальные центробежные одноступенчатые с приводом от электродвигателя через упругую муфту; применяются в химической, нефтехимической и других Их изготовляют отраслях промышленности. различных исполнениях по материалу деталей проточной части, типу узла рабочего диаметру колеса, мощности уплотнения вала, исполнению комплектующего двигателя[30].

На сводном графике полей Q-H для насосов типов X (рис. Π .4-2) сплошной линией показаны серийно выпускаемые насосы, пунктирной — насосы, поставляемые по заказу.

По подаче и напору на сводном графике полей Q-H предварительно выбирают насос требуемого типоразмера, а затем по графической характеристике (рис.П.4-3.1 ... П.4-3.12) уточняют правильность выбора. По графической характеристике определяют необходимый диаметр рабочего колеса насоса, кривая напора которого должна проходить через точку заданных параметров по подаче и напору или быть несколько выше ее.

Габаритные размеры электронасосных агрегатов типов X приведены в табл. $\Pi.4-1$, а материалы их основных деталей в табл. $\Pi.4-2$.

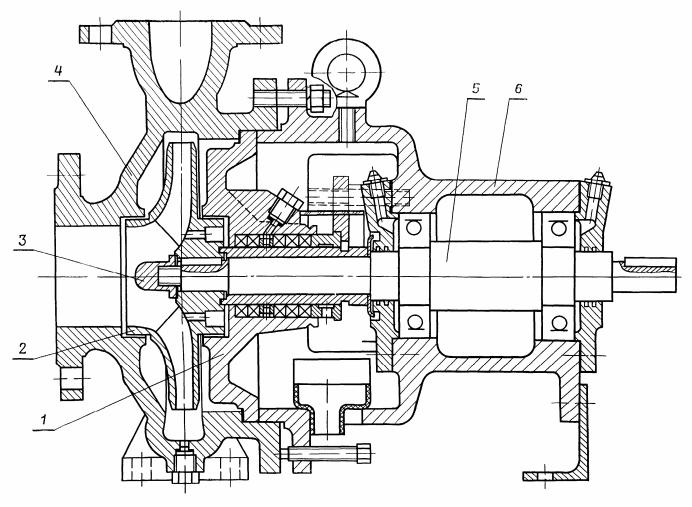


Рис. П.4-1. Разрез насоса типа ${\bf X}$

1 – крышка корпуса насоса, 2 – рабочее колесо, 3 – гайка, 4 – корпус, 5 – вал, 6 – опорный кронштейн.

Рис. П.4-2. Сводное поле Q-H насосов типа X (частота вращения n указана в оборотах в минуту; пунктир внутри поля – средняя его часть)

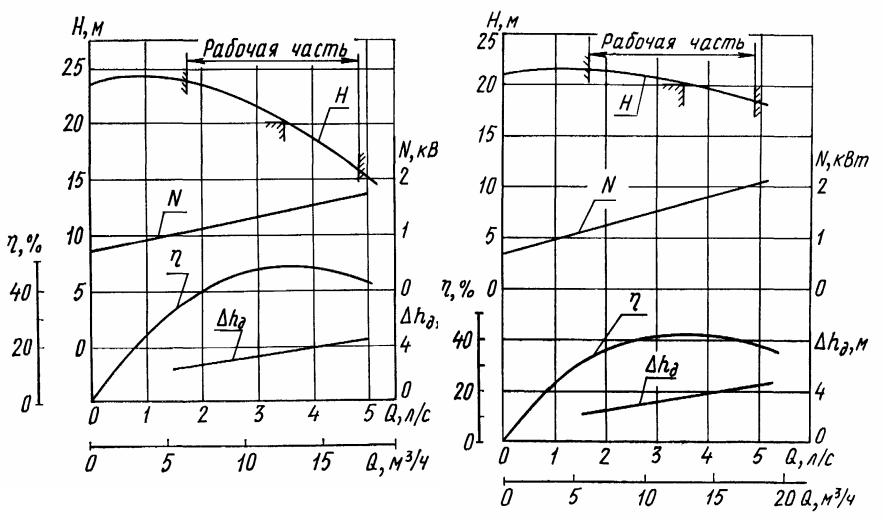


Рис. П. 4-3.1. Характеристика насоса X50-32-125-Д; n=2900 об/мин

Рис. П. 4-3.2. Характеристика насоса XЭО-Э2-125-Т; *n* =2900 об/мин

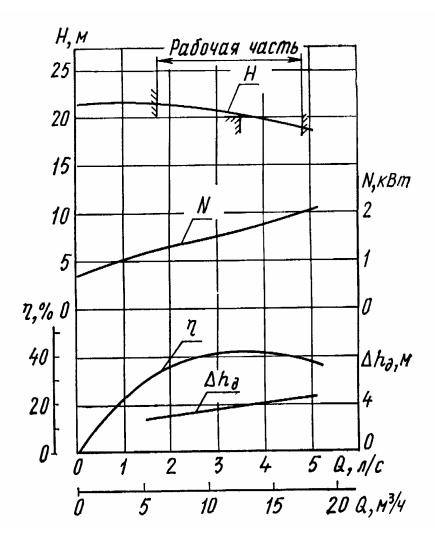


Рис. П. 4-3.3. Характеристика насоса X50-32-125-Л; n = 2900 об/мин

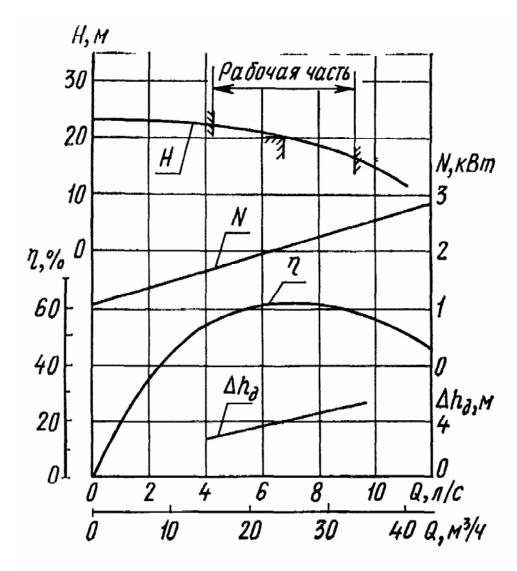


Рис. П. 4-3.4. Характеристика насоса X65-50-125-Д; n=2900 об/мин

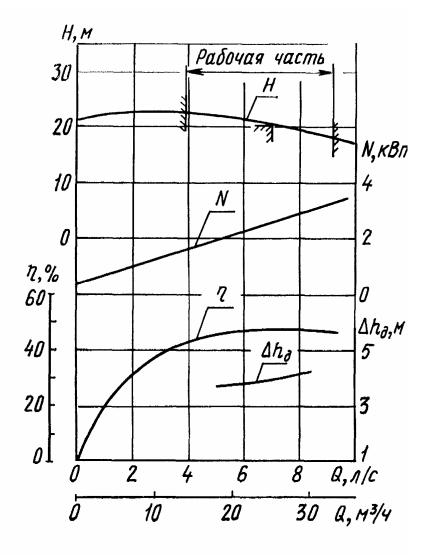


Рис. П. 4-3.5. Характеристика насоса X65-50-125-Т; n=2900 об/мин

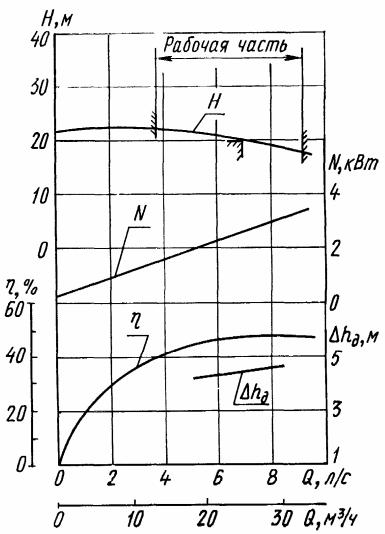


Рис. П. 4-3.6. Характеристика насоса X65-50-125-Л; n=2900 об/мин

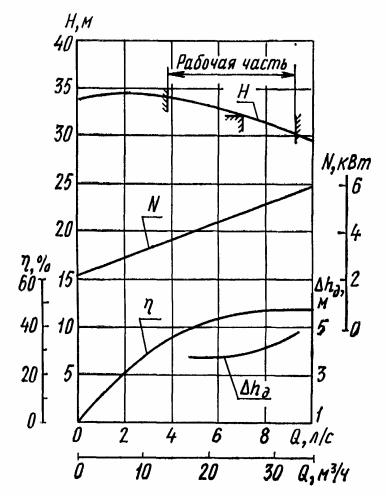


Рис. П. 4-3.7. Характеристика насоса X65-50-160-Т; n=2900 об/мин

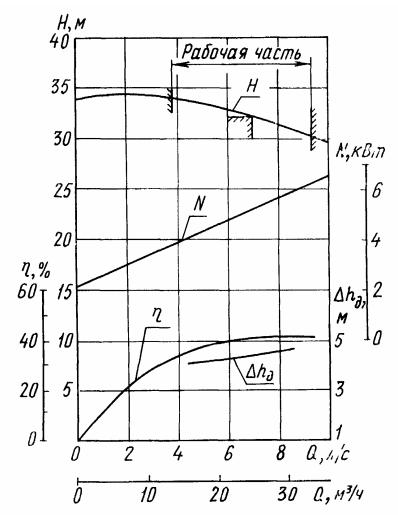


Рис. П. 4-3.8. Характеристика насоса X65-50-160-Л; n=2900 об/мин

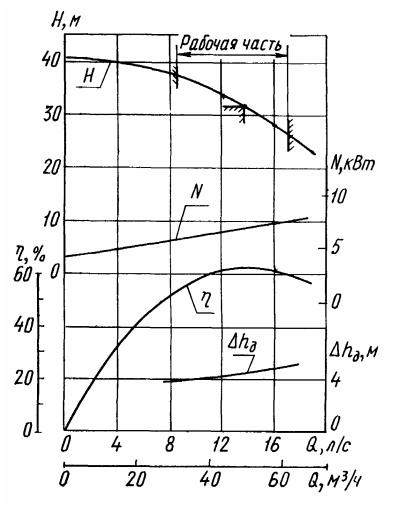


Рис. П. 4-3.9. Характеристика насоса X80-50-160-Д; n=2900 об/мин

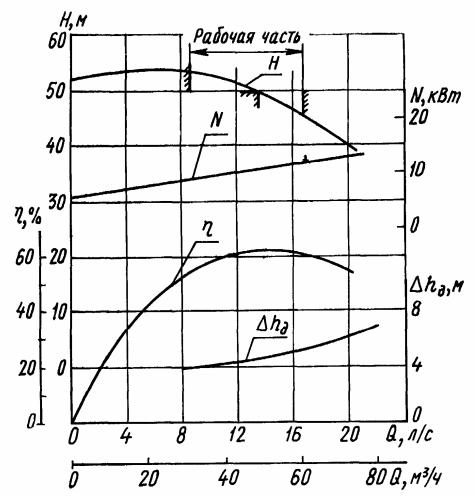


Рис. П. 4-3.10. Характеристика насоса X80-50-200-К (Е, И); n=2900 об/мин

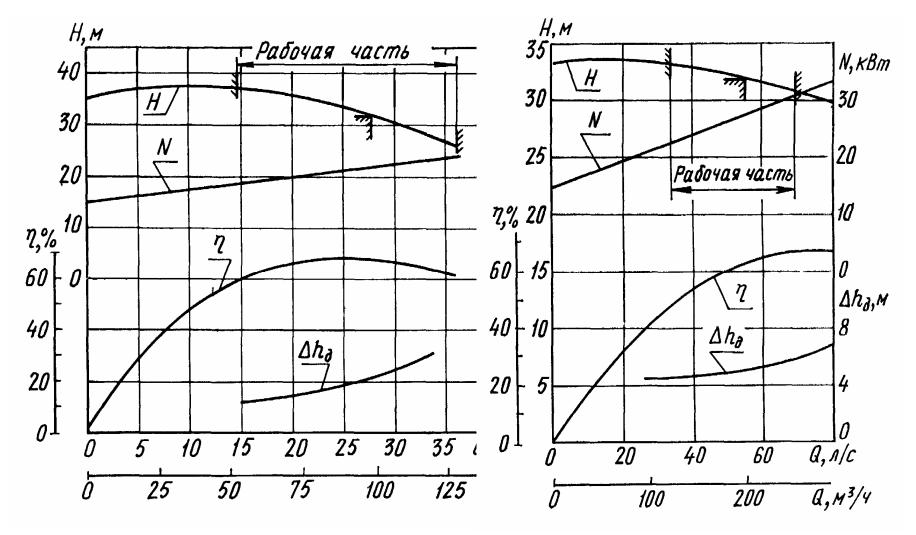


Рис. П. 4-3.11. Характеристика насоса XI00-80-160-Д (К, Е, И); n=2900 об/мин

Рис. П. 4-3.12. Характеристика насоса X150-125-315-Л; n=1450 об/мин

ГАБАРИТНЫЕ РАЗМЕРЫ (мм) ЭЛЕКТРОНАСОСНЫХ АГРЕГАТОВ типа ${\bf X}$

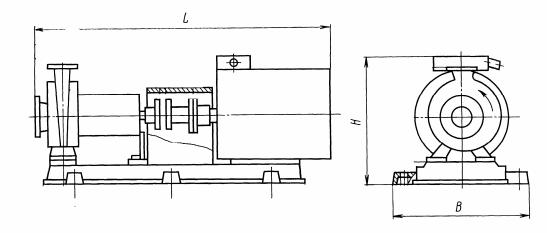


Табл. П.4-1

		Двига	гель				
Типоразмер насоса	Тип	Мощность, кВт	Частота вращения, об/мин	Напряжение, В	L	В	Н
Х50-32-125-Д	4A90L2	3			920	410	325
	4A100S2	4			930	418	330
Х65-50-125-Д	4A100S2	4			930	410	330
	4A100L2	5,5			960	418	330
Х80 50-160-Д	4A160S2	15	2000	200	1210	460	500
, ,	4A160M2	18,5	3000	380	1255	460	500
Х80-50-200-К	4A160M2	18,5			1250	504	530
(Е, И)	4A180S2	22			1250	495	570
ХШО-8Ю-160-Д	4A180S2	22			1360	250	550
(К, Е, И)	B180M2	30			1500	350	660

Табл. П.4-2

МАТЕРИАЛ ОСНОВНЫХ ДЕТАЛЕЙ НАСОСОВ типов Х

Исполнение по материалу							
Наименование детали	Д	К	Е	И	Т	Л	
Корпус насоса Рабочее колесо Крышка корпуса	Хромистый чугун ЧХ28	Сталь 12X18Н9ТЛ	Сталь 12X18H12M3TЛ	Сталь 06ХН28МДТЛ	Титановый сплав ТЛЗ	Кремнистый чугун ЧС15	
Защитная втулка	Сталь		Сталь	Сталь	Титановый	Сталь 06ХН28МДТЛ	
Вал	10X17H13M2T		10X17H13M2T	06ХН28МДТ	сплав ВТ1	Сталь 06ХН28МДТ	
Кронштейн	Чугун СЧ15						

НАСОСЫ ТИПОВ АХ

(рис. $\Pi.5-1$) AX Насосы ТИПОВ центробежные горизонтальные консольные одноступенчатые [30]. Предназначены для перекачивания химически активных и нейтральных жидкостей плотностью не более 1850 кг/м3, вязкостью до $3 \cdot 10^{-5}$ м²/с, содержащих твердые включения размером до 1 мм, объемная 1,5%. (превышает которых не Температура концентрация перекачиваемой жидкости - от 273 до 363 К (от 0 до 90° C) для исполнения по материалу проточной части Д и от 233 до 363 К (от -40 до +90°C) – для остальных исполнений.

На сводном графике полей Q-H для насосов типа AX (рис. $\Pi.5$ -2) сплошной линией показаны серийно выпускаемые насосы, пунктирной — насосы, поставляемые по заказу.

По подаче и напору на сводном графике полей Q-H предварительно выбирают насос требуемого типоразмера, а затем по графической характеристике (рис.П.5-3.1 ... П.5-3.3) уточняют правильность выбора. По графической характеристике определяют необходимый диаметр рабочего колеса насоса, кривая напора которого должна проходить через точку заданных параметров по подаче и напору или быть несколько выше ее.

Габаритные размеры (мм) электронасосных агрегатов типа АХ приведены в табл. П.5-1, материал основных деталей этих насосов в табл. П.5-2.

На рис. Π .5-4 показана схема демонтажа электронасосных агрегатов типов X и AX.

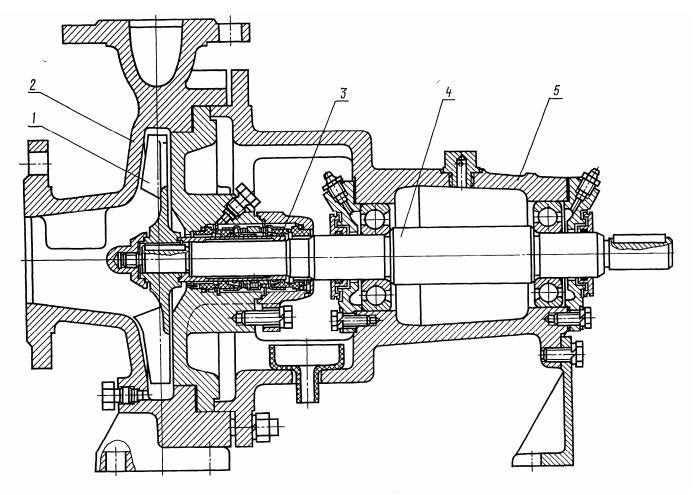


Рис. П.5-1. Разрез насоса типа AX I – рабочее колесо открытого типа; 2 – корпус; 3 – защитная втулка; 4 – вал; 5 – опорный кронштейн.

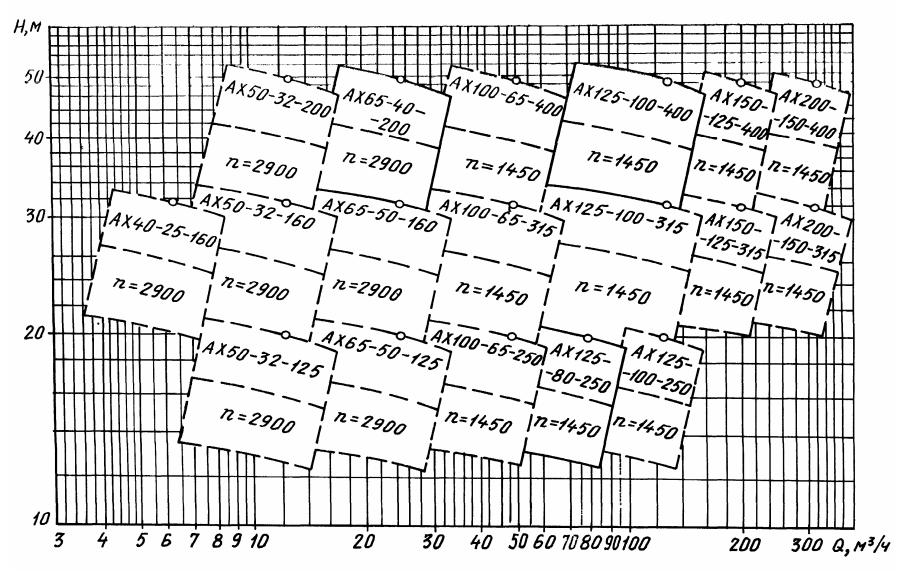


Рис. П.5-2. Сводное поле Q-H насосов типа АХ (частота вращения n указана в оборотах в минуту; пунктир внутри поля – средняя его часть)

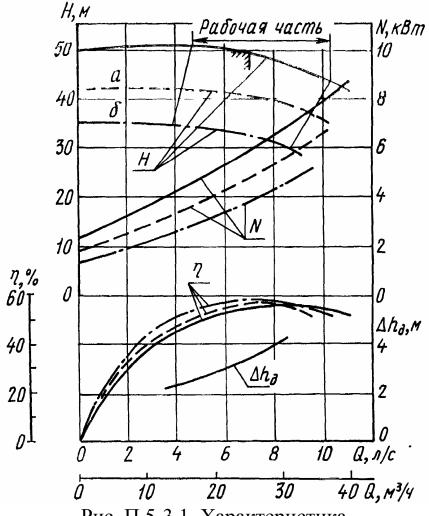


Рис. П.5-3.1. Характеристика насоса АХ (О) 65-40-200; n = 2900 об/мин

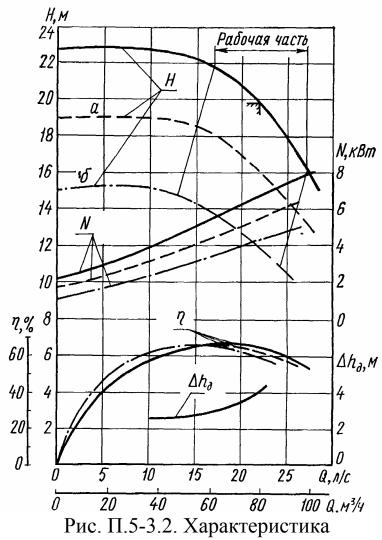


Рис. П.5-3.2. Характеристика насоса АХ 125-80-250; n = 1450 об/мин

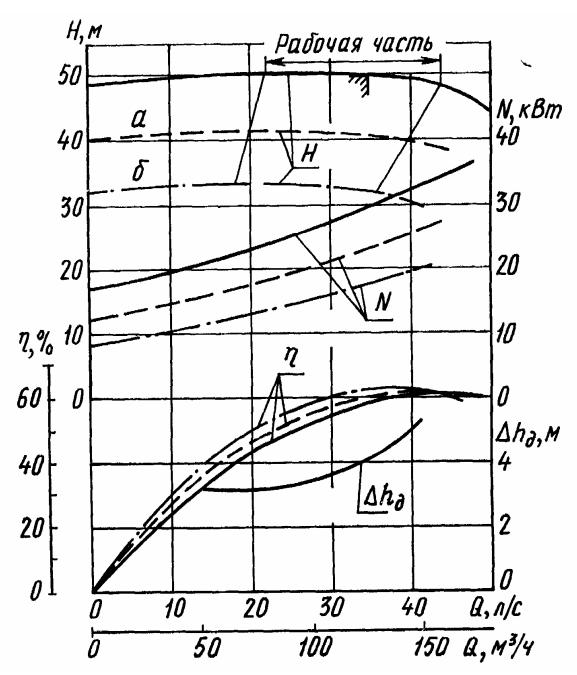


Рис. П.5-3.3. Характеристика насоса АХ125-100-400; n =1450 об/мин

ГАБАРИТНЫЕ РАЗМЕРЫ (мм) ЭЛЕКТРОНАСОСНЫХ АГРЕГАТОВ типа АХ

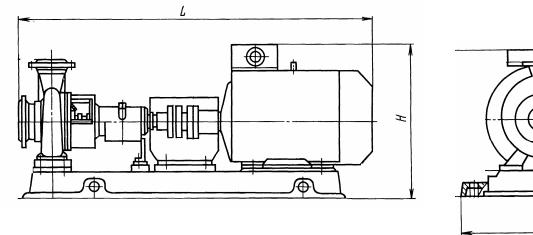


Табл. П-5-1

Типоразмер		Двигатель					
насоса	Тип	Мощность, кВт	Частота вращения, об/мин	Напряжение, В	L	В	Н
	4A100L2	5,5			985		420
AV (O) 65 40 200	B112M2	7,5			1170		558
AX (O) 65-40-200	4A132M2	11	3000		1120	305	458
	B160S2	15			1280		620
AX125-80-250	4A160S4	15		220/380	1394	480	595
AX123-60-230	B160M4	18,5			1510	460	705
	4A200L4	45	1500		1640	685	775
AX125-100-400	4A225M4	55			1650		790
	4A250S4	75			1725		830

Табл. П.5-2 МАТЕРИАЛ ОСНОВНЫХ ДЕТАЛЕЙ НАСОСОВ типа АХ

	Исполнение по материалу							
Наименование детали	A	Д	К	Е	E_1	И		
Рабочее колесо Корпус насоса Крышка корпуса	Сталь 25Л	Хромистый чугун ЧХ32	Сталь 10Х18Н9ТЛ	Сталь 10X18H12M3TЛ	Сталь 10Х21Н6М2ТЛ	Сталь 07ХН25МДТЛ		
Защитная втулка	Сталь 20X13 или 45	Сталь 20Х13	Сталь	Сталь	Сталь	Сталь		
Вал: в зоне уплотнения насоса	Сталь 30	1.	12X18H9T	10X17H13M2T	08X21H6M21	06ХН28НДТ		
в зоне подшипников	Сталь 30	Сталь 20X13 или 30K	Сталь 30					
Корпус и крышка подшипника	Чугун СЧ20							

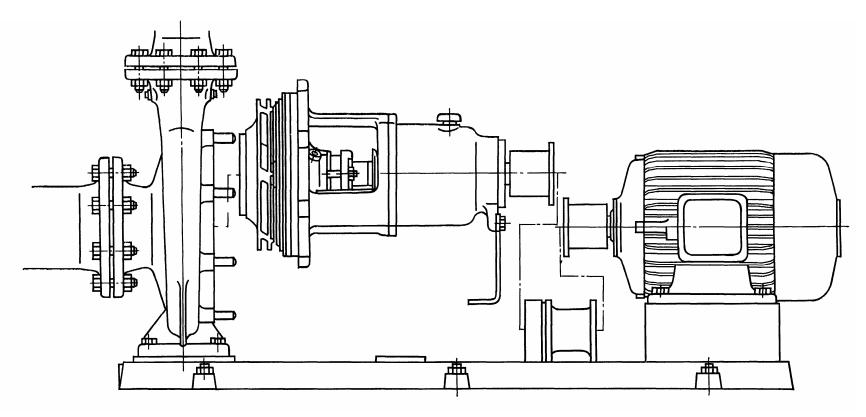


Рис. П.5-4. Схема демонтажа электронасосных агрегатов типов X и АХ

ЦЕНТРОБЕЖНЫЕ МОНОБЛОЧНЫЕ ЭЛЕКТРОНАСОСЫ типа КМ

Электронасосы типа КМ (рис. П.6-1) унифицированного ряда центробежные горизонтальные одноступенчатые моноблочные. Предназначены для перекачивания воды (кроме морской) с рН = 7 и других жидкостей, сходных с водой по плотности, вязкости и химической активности, содержащих твердые включения размером до 0,2 мм, объемная концентрация которых не превышает 0,1%. Температура перекачиваемой жидкости — от 273 до 358 К (от 0 до 85° C) [30].

На сводном графике полей Q-H для насосов типа КМ (рис. $\Pi.6-2$) сплошной линией показаны серийно выпускаемые насосы, пунктирной — насосы, поставляемые по заказу. По подаче и напору на сводном графике полей Q-H предварительно выбирают насос требуемого типоразмера, а затем по графической характеристике (рис. $\Pi.6-3.1...\Pi.6-3.3$) уточняют правильность выбора. По графической характеристике определяют необходимый диаметр рабочего колеса насоса, кривая напора которого должна проходить через точку заданных параметров по подаче и напору или быть несколько выше ее.

В конструкции электронасоса предусмотрена установка двух взаимозаменяемых вариантов уплотнения вала: сальниковое уплотнение типа С или торцовое уплотнение типа 132.

Подвод перекачиваемой жидкости — горизонтальный по оси насоса, отвод — вертикально вверх. Напорный патрубок выведен на ось насоса.

Электронасосы КМ 100-65-200 и КМ 150-125-315 смонтированы на фундаментной плите. Электронасос КМ 80-50-200 фундаментной плиты не имеет.

Материал деталей проточной части — чугун СЧ20; защитной втулки — сталь 45.

Технические характеристики насосов типа КМ приведены в табл. П.6-1, а их габаритные размеры (мм) в табл. П.6-2.

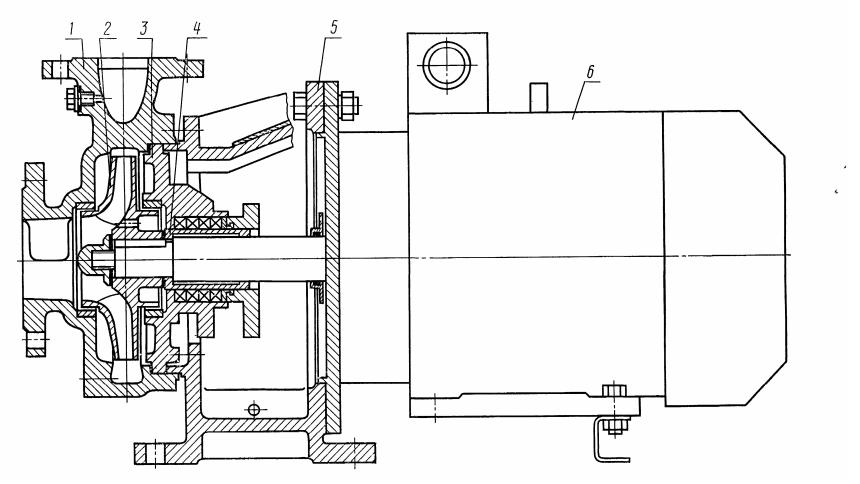


Рис. П.6-1. Разрез электронасоса типа КМ

– спиральный корпус, 2 – рабочее колесо, 3 – узел уплотнения.

– защитная втулка, 5 – промежуточный фонарь, 6 – двигатель

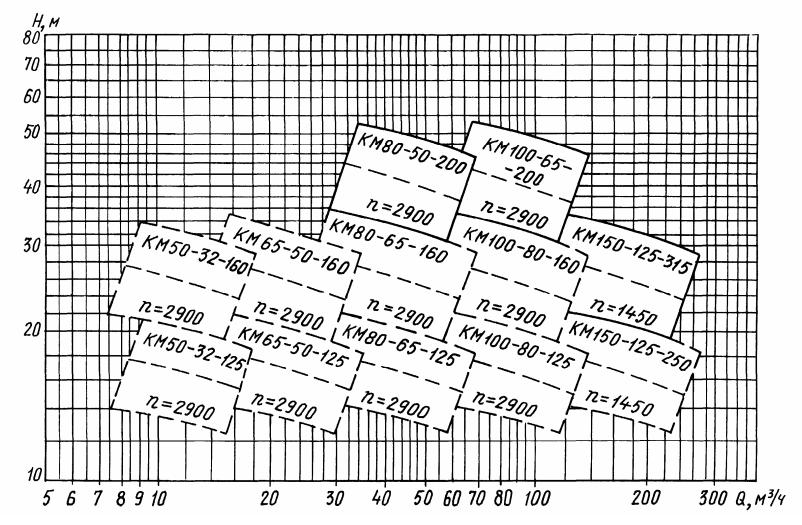


Рис. П.6-2. Сводное поле Q-H насосов типа КМ (частота вращения n указана в оборотах в минуту; пунктир внутри поля – средняя его часть)

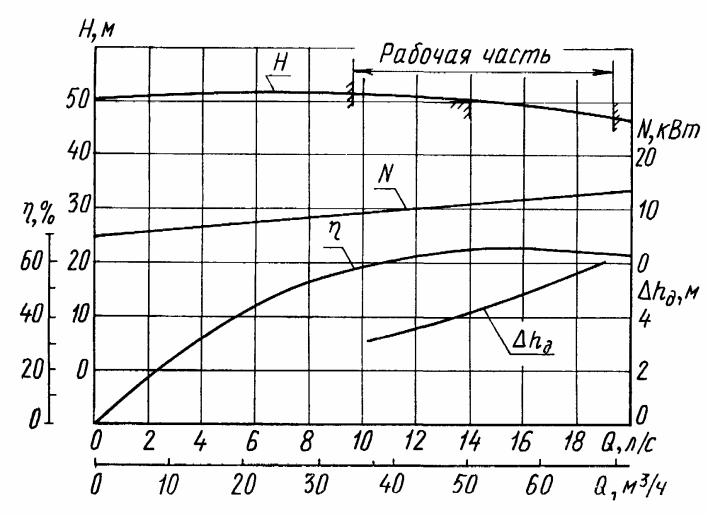


Рис. П.6-3.1. Характеристика электронасоса КМ 80-50- 200; n =2900 об/мин

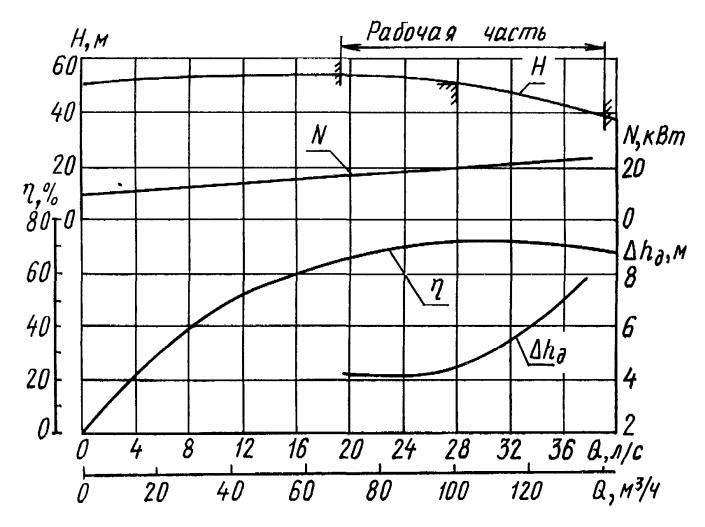


Рис. П.6-3.2. Характеристика насоса КМ 100-65-200; n = 2900 об/мин

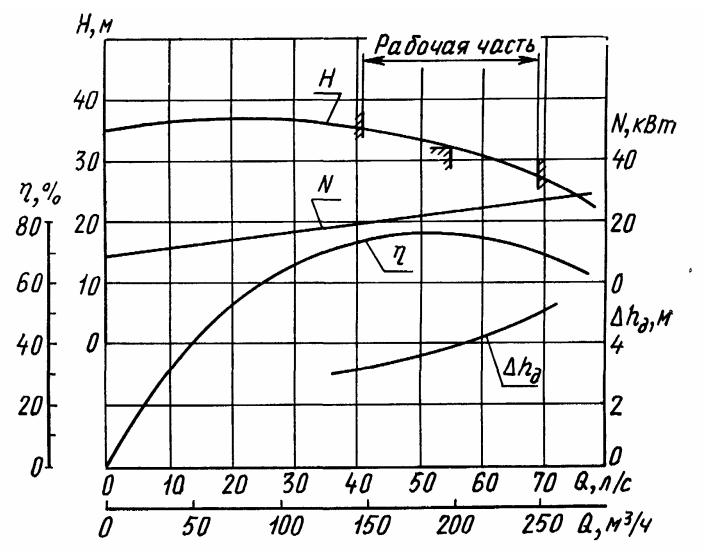


Рис. П.6-3.3. Характеристика насоса КМ 150-125-315; n = 1450 об/мин

Табл. П.6-1 Технические характеристики насосов типа КМ

Типоразмер	Подача, м ³ /ч макс. номин. мин.	Напор, м	Частота вращения, об/мин	Мощность двигателя,, кВт	Допускаемый кавитационный запас, м, не более	КПД, %, не менее
KM 50-32-125	17 12,5 8,6	17 20 22	2900	2,2	3,5	55
KM 65-50-160	34 25 15	28 32 34	2900	5,5	3,8	64
KM 80-65-160	68 50 32	26 32 34	2900	7,5	3,6	70
KM 80-50-200	68 50 36	44 50 54	2900	15	3,5	65
KM 100-80-160	132 100 65	28 32 36	2900	15	4,5	77
KM 100-65-200	140 100 60	42 50 56	2900	30	4,5	72
KM 150-125-250	245 200 120	18 20 21	1450	18,5	4,2	76

ГАБАРИТНЫЕ РАЗМЕРЫ (мм) ЭЛЕКТРОНАСОСОВ типа КМ

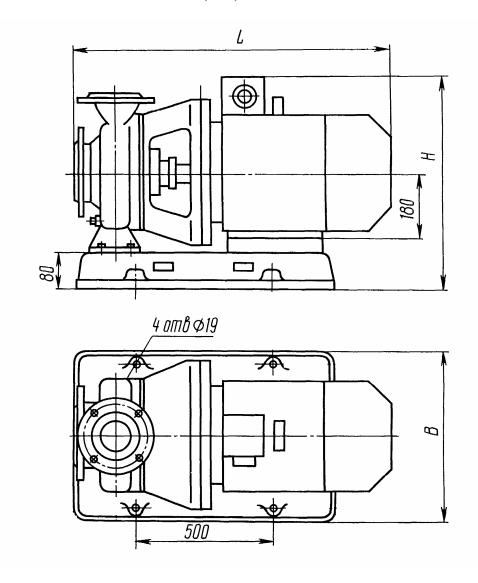


Табл.П.6-2

Туугаразулар								
Типоразмер электронасоса	Тип	Мощность, кВт	Частота вращения, об/мин	Напря жение, В	L		B]	Н
KM 80-50-200	4А16082ЖУ2	15	3000	380	810	350	475	
KM 100-65-200	4А180М2ЖУ2	30	3000	380	890	425	550	
KM 150-125-315	4А180М4ЖУ2	30	1500	380	920	560	650	

приложение п. 7

НАСОСЫ ТИПОВ Д

Центробежные насосы двустороннего входа (типа Д) одноступенчатые горизонтальные c полуспиральным подводом жидкости к рабочему колесу, с горизонтальным разъемом корпуса, с выносными подшипниками качения(рис. П.7-1). Предназначены для перекачивания воды и жидкостей, сходных с водой по вязкости до 36 сСт и химической активности, температурой до 358 К (85°C), содержащих не более 0,06% по массе твердых выключений максимальным размером 0,2 мм и микротвердостью не более 650 кгс/мм² [32]. Насосы применяются на насосных станциях первого и второго подъемов городского, промышленного и сельского водоснабжения, в том числе для орошения и осущения полей, а также в других отраслях промышленности. Этот тип насосов не предназначен для перекачивания взрывопожароопасных жидкостей, а также любых жидкостей во взрыво- и пожароопасных помещениях.

Типоразмер предварительно выбирают насоса требуемой подаче и напору на сводном графике полей Q - H(рис. П.7-2), а затем по графической характеристике (рис.П.7-3.1 ... П.7-3.28) уточняют правильность выбора. При этом следует учитывать, что требуемые режимы работы (подача и напор) должны находиться в пределах рабочей части насоса. По графической характеристики характеристике определяют необходимый диаметр рабочего колеса насоса, кривая напора которого должна проходить через точку заданных параметров по подаче и напору или быть несколько выше ее.

Привод насоса – от электродвигателя через упругую муфту.

Технические характеристики насосов типа Д приведены в табл. П.7-1, а габаритные и присоединительные размеры этих насосов в табл. П.7-2.

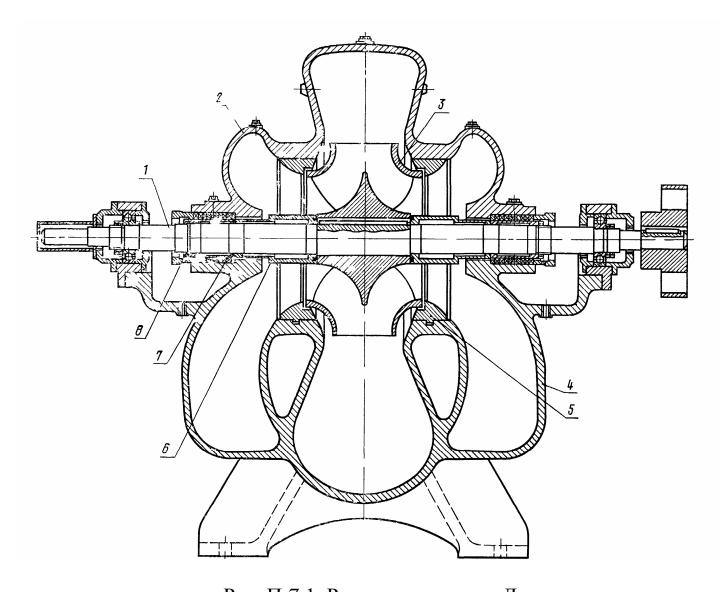


Рис. П.7-1. Разрез насоса типа Д 1— вал, 2— крышка, 3—рабочее колесо, 4 — корпус, 5 — сменные уплотнительные кольца; 6, 7— защитные втулки; 8 гайки

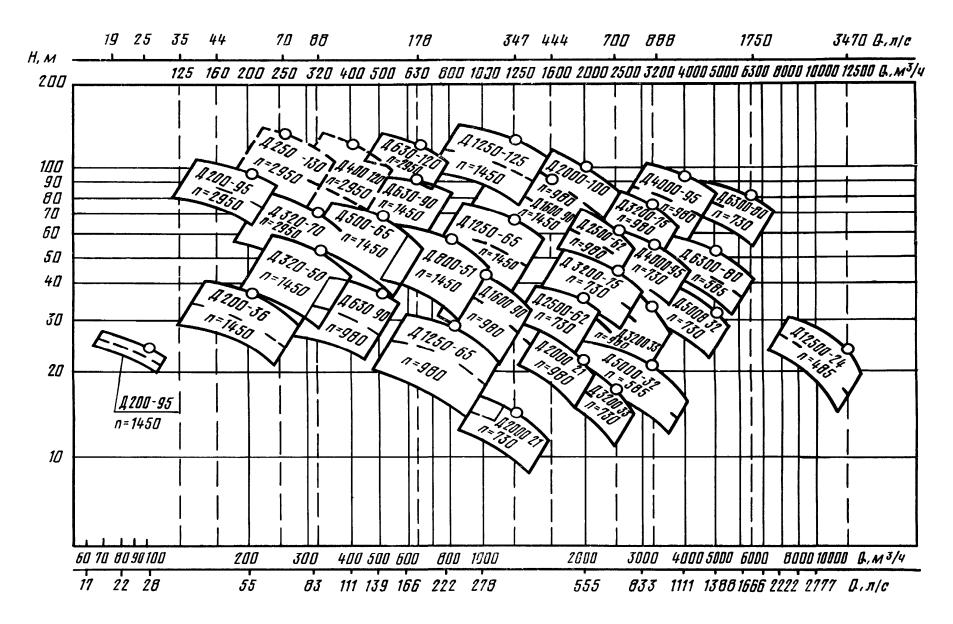


Рис. П.7-2. Сводное поле Q - H насосов типа Д (частота вращения n указана в оборотах в минуту)

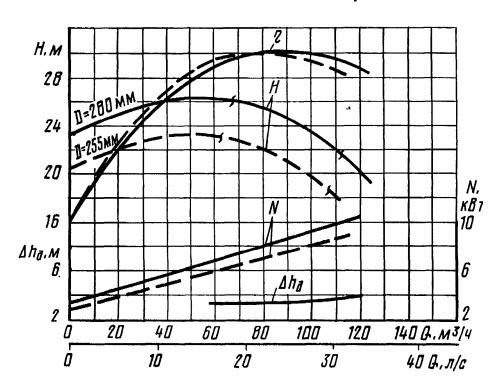


Рис. П.7-3.1. Характеристика насоса Д200-35; n = 1450 об/мин

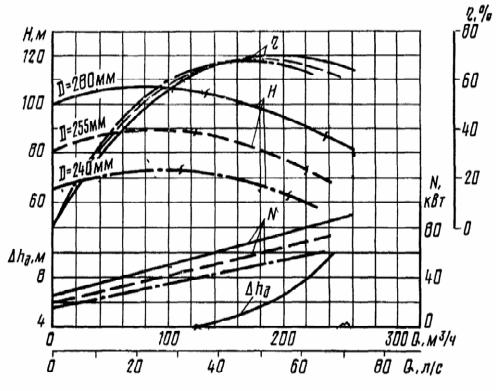


Рис. П.7-3.2.. Характеристика насоса Д200-95; n = 2950 об/мин

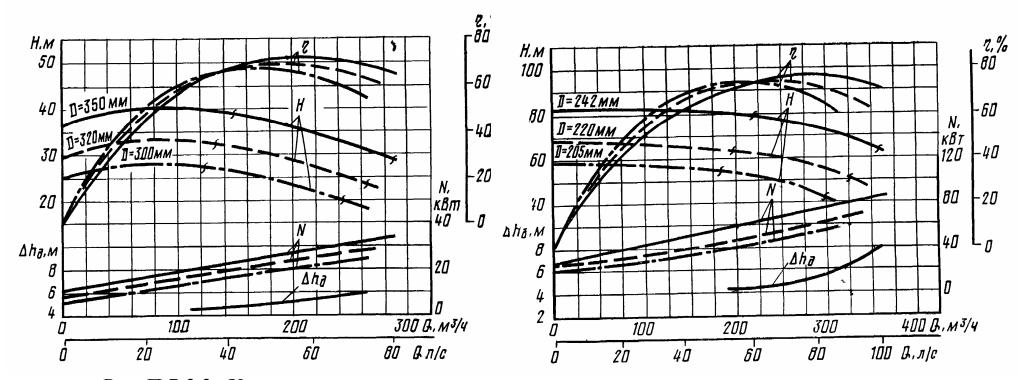


Рис. П.7-3.3.. Характеристика насоса Д200-36; n = 1450 об/мин

Рис. П.7-3.4.. Характеристика насоса Д320-70; n = 2950 об/мин

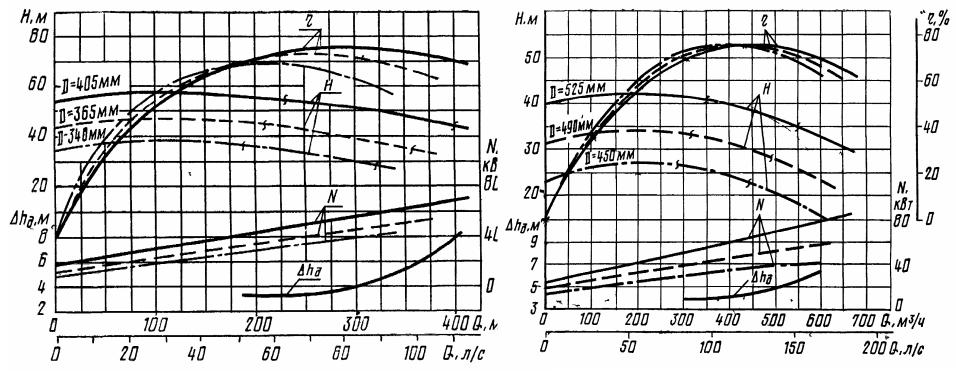


Рис. П.7-3.5.. Характеристика насоса Д320-50; n = 1450 об/мин

Рис. П.7-3.6.. Характеристика насоса Д630-90; n = 960 об/мин

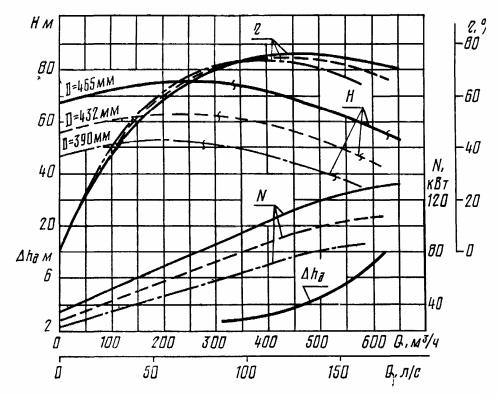


Рис. П.7-3.7.. Характеристика насоса Д500-65; n = 1450 об/мин

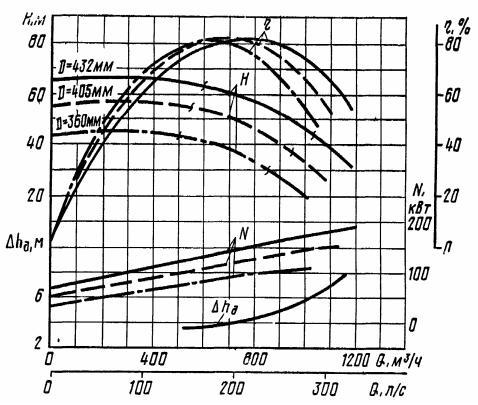


Рис. П.7-3.8.. Характеристика насоса Д800-57; n = 1450 об/мин

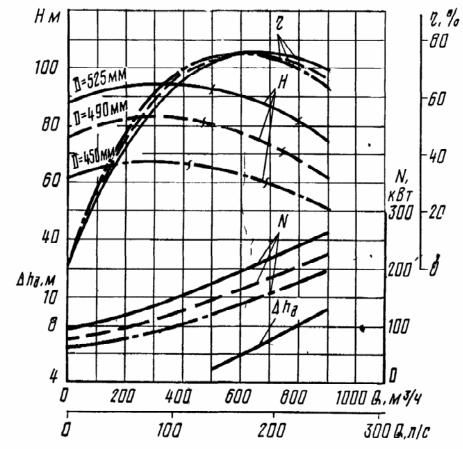


Рис. П.7-3.9.. Характеристика насоса Д630-90, *n* =1450 об/мин

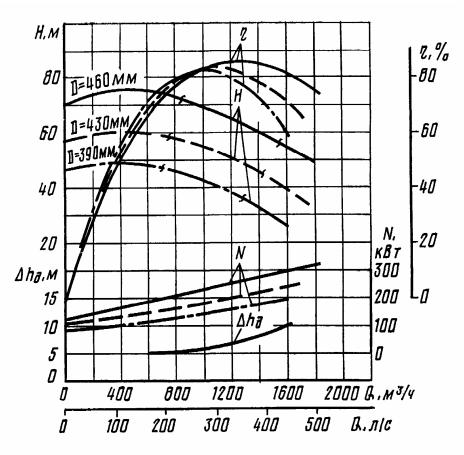


Рис. П.7-3.10.. Характеристика насоса Д1250-65, n = 1450 об/мин

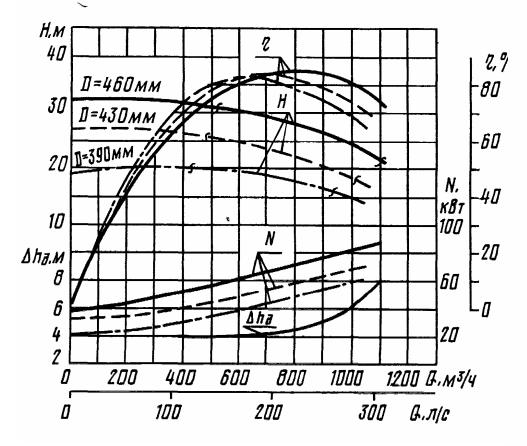


Рис. П.7-3.11.. Характеристика насоса Д1250-65; n = 960 об/мин

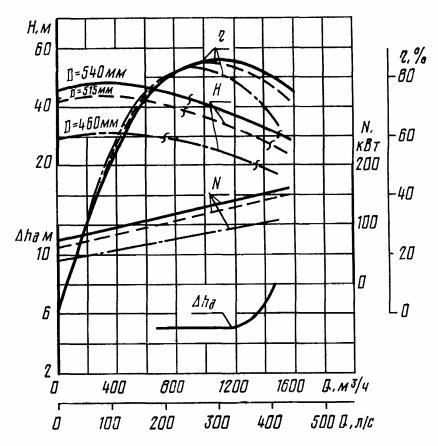


Рис. П.7-3.12.. Характеристика насоса Д1600-90; n = 960 об/мин

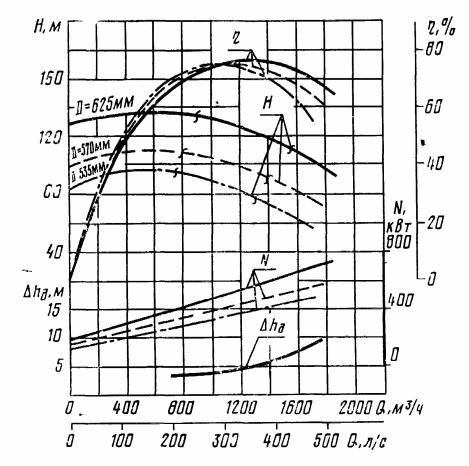


Рис. П.7-3.13.. Характеристика насоса Д1250-125; n = 1450 об/мин

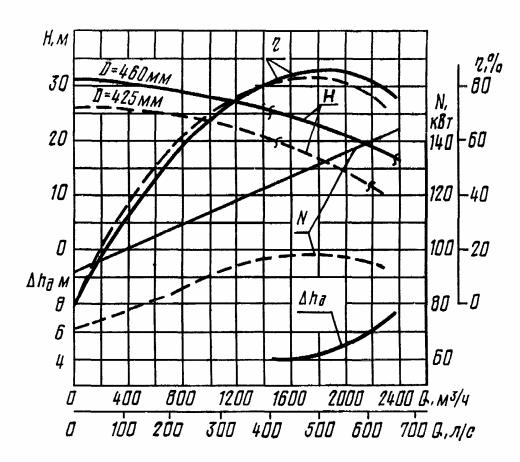


Рис. П.7-3.14.. Характеристика насоса Д2000-21; *n* =980 об/мин

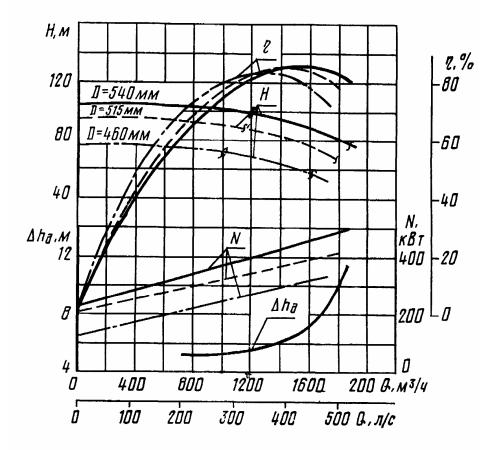


Рис. П.7-3.15.. Характеристика насоса Д1600-90; n = 1450 об/мин

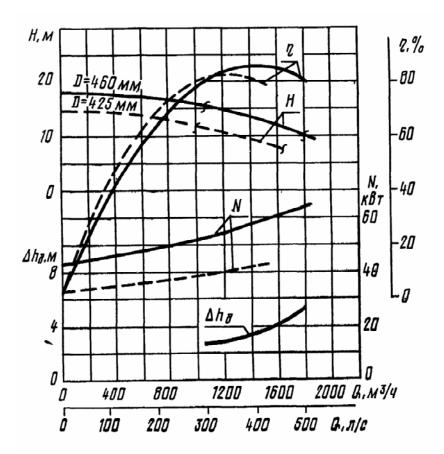


Рис. П.7-3.16.. Характеристика насоса Д2000-21; n =730 об/мин

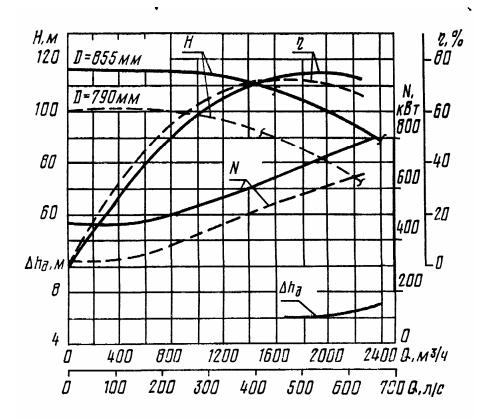


Рис. П.7-3.17.. Характеристика насоса Д2000-100; n =980 об/мин

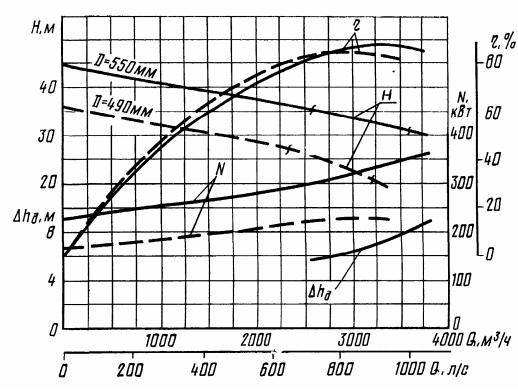


Рис. П.7-3.18.. Характеристика насоса Д3200-33; n = 980 об/мин

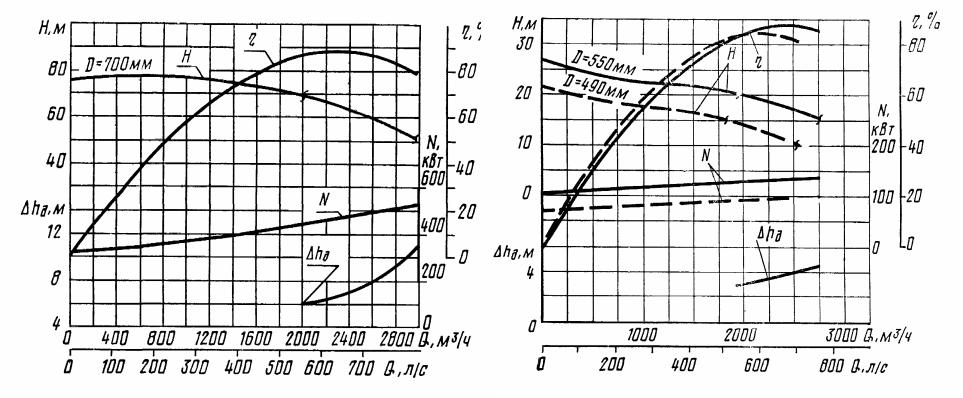


Рис. П.7-3.19.. Характеристика насоса Д2500-62; *n*=980 об/мин

Рис. П.7-3.20.. Характеристика насоса Д3200-33; n=730 об/мин

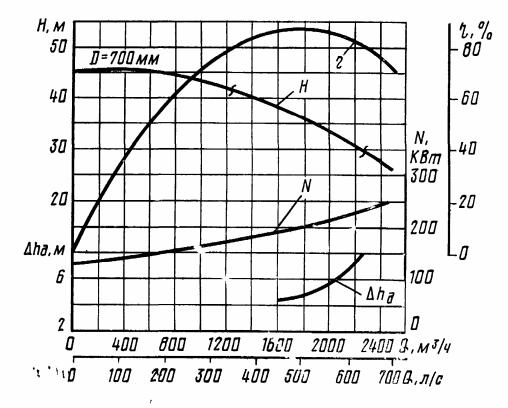


Рис. П.7-3.21.. Характеристика насоса Д2500-62; n =730 об/мин

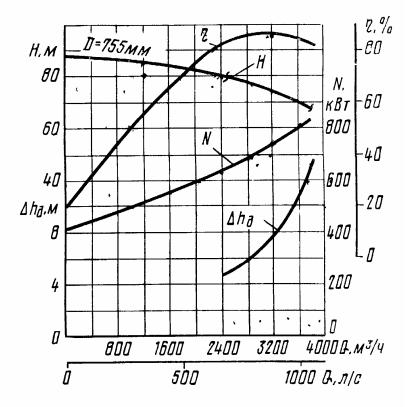


Рис. П.7-3.22.. Характеристика насоса Д3200-75; n = 980 об/мин

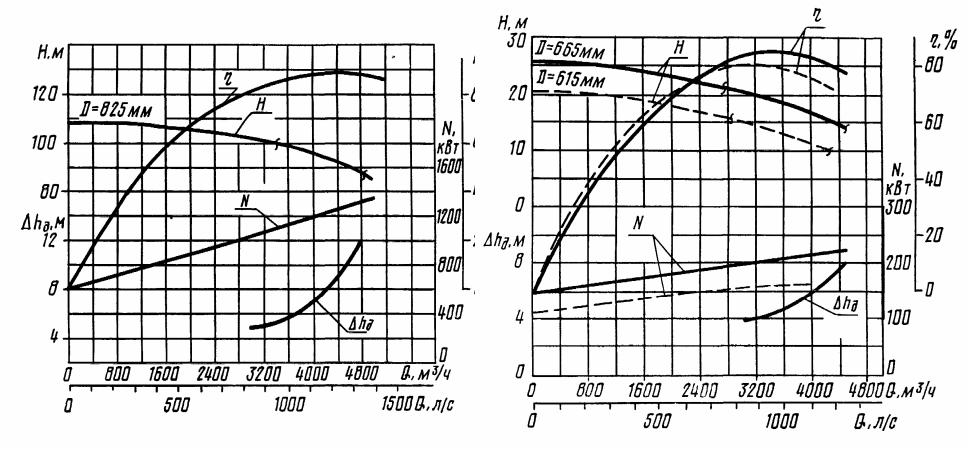


Рис. П.7-3.23.. Характеристика насоса Д4000-95; n = 980 об/мин

Рис. П.7-3.24.. Характеристика насоса Д5000-32; n = 585 об/мин

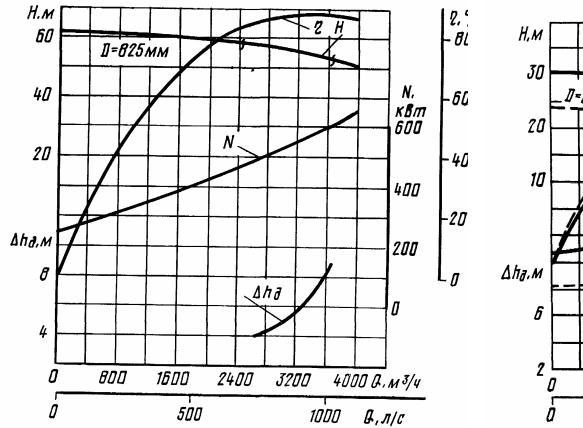


Рис. П.7-3.25.. Характеристика насоса Д4000-95; n = 730 об/мин

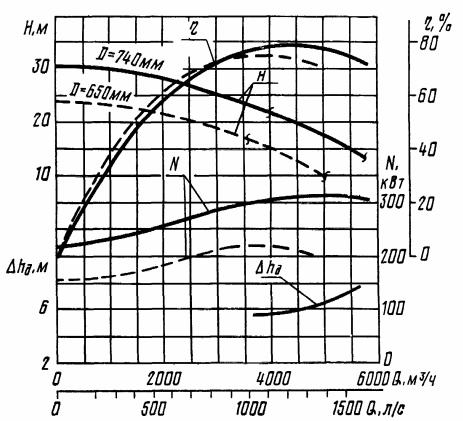


Рис. П.7-3.26.. Характеристика насоса Д6300-27; n = 585 об/мин

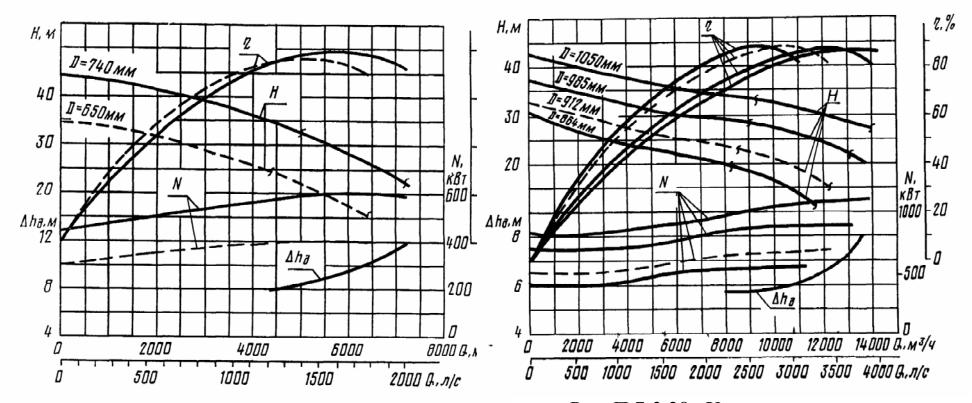


Рис. П.7-3.27.. Характеристика насоса Д6300-27; n =730 об/мин

Рис. П.7-3.28.. Характеристика насоса Д12500-24; *n*=485 об/мин

Табл. П.7-1 Технические характеристики насосов типа Д

Типоразмер	Подача, м ³ /ч макс. номин. мин.	Напор, м	Частота вращения, об/мин	Мощность двигателя,, кВт	Допускаемый кавитационный запас, м, не более	КПД, %, не менее
1	2	3	4	5	6	7
Д200-36	240 200 160	33 36 38	1450	37	4,3	74
Д200-36 а	230 190 150	26 29 32	1450	30	4,8	69
Д200-36 б	210 180 130	23 25 27	1450	22	5	67
1Д200-90	240 200 140	83 90 97	2900	90	5,5	75
1Д200-90Э	220 180 130	68 74 80	2900	75	5,5	75
1Д200-90 б	200 160 115	56 62 68	2900	55	5,5	75
1Д250-125	305 250 180	120 125 133	2900	160	6	73
1Д250-125а	300 240 170	94 101 108	2900	132	6	73
1Д315-50	380 315 200	43 50 60	2900	75	6,5	79
1Д315-50а	360 300 210	35 42 48	2900	55	6,5	79
1Д315-50 б	325 280 210	30 36 40	2900	45	6,5	79

Продолжение табл. П.7-1

				продо	JIMCIIIIC .	14031. 1
1	2	3	4	5	6	7
	370	65				
1Д315-71	315	71	2900	110	6,5	80
	215	79			,,,,	
	355	57				
1Д315-71а	300	63	2900	90	6,5	80
1,510 / 14	210	69			0,0	
	560	58				
1Д500-63	500	63	1450	160	4,5	77
	340	69				
	550	47				
1Д500-63а	310	53	1450	132	4,8	74
	400	58				
	510	38				
1Д500-63 б	400	44	1450	110	5	69
	280	47				
	760	85				
1Д630-90	630	90	1450	250	5,5	77
	440	95				
	710	68				
1Д630-90а	550	74	1450	200	5,8	74
	360	78				
	660	57				
1Д630-90 б	500	60	1450	160	5,9	69
	290	64				
	740	117				
1Д630-125	630	125	1450	400	5,5	71
	420	129			,	
	680	95				
1Д630-125а	550	101	1450	315	5,6	68
	350	109				
	650	78				
1Д630-125 б	500	82	1450	250	5,7	63
	300	88				
	940	53				
1Д800-56	800	56	1450	200	5	83
. ,	540	62				
	870	43				
1Д800-56а	740	48	1450	132	5,1	80
	520	52				
	800	35				
1Д800-56 б	700	40	1450	110	5,2	75
	490	43				
		·		+	!	<u> </u>

Продолжение табл. П.7-1

1	2	3	4	5	6	7
171.070.00	1500	56	1.1.5.0		_	0.6
1Д1 250-63	1250	63	1450	315	6	86
	880	68				
1Д1250-63а	1360 1100	45 52.5	1450	250	6 1	83
1Д1230-03а	760	52,5 56	1430	250	6,1	83
	1280	37				
1Д1250-63 б	1050	44	1450	200	6,2	78
171230 03 0	720	47	1 150	200	0,2	70
	1515	110				
1Д1250-125	1250	125	1450	630	5,5	78
	890	134				
	1380	92				
1Д1250-125Э	1150	102	1450	500	5,6	75
	800	114				
	1250	80				
1Д1250-125 б	1030	84	1450	400	5,7	70
	710	96				
	1980	82			_	
1Д1600-90	1600	90	1450	630	7	85
	1150	99				
1 П1 (00 00	1800	68	1.450	400	7.1	0.2
1Д1600-90а	1450	75	1450	400	7,1	82
	1050	83				
1Д1600-90 б	1625 1300	55 65	1450	315	7.2	77
1Д1000-90 0	950	68	1430	313	7,2	/ /
АД2000-21-2	2000	21	960	160	5	90
АД2000- 100-2	2000	100	960	800	6	82
АД2000- 100-2	2000	100	900	800	0	02
АД2500-62-2	2500	62	960	630	6	88
АД3200-33-2	3200	33	960	400	6,5	86
АД3200-75-2	3200	75	960	1000	6,5	88
АД4000-95-2	4000	95	960	1600	7	86
АД6300-27-3	6300	27	730	630	7,5	90

 $\mbox{Табл.} \ \Pi. \mbox{7-2}$ Габаритные и присоединительные размеры насосных агрегатов «Д»

Типоразмер	Длина, мм	Ширина, мм	Высота, мм	Внутр. диаметр всас. патрубка, мм	Внутр. диаметр напор. атрубка, мм	Масса, кг
1	2	3	4	5	6	7
Д200-36	1625	799	835	150	125	730
Д200-36а	1500	799	730	150	125	605
Д200-366	1496	799	730	150	125	625
1Д200-90	1727	557	795	150	100	820
1Д200-90а	1477	530	740	150	100	575
1Д200-90 б	1582	530	755	150	100	635
1Д250-125	2007	895	910	150	100	1245
1Д250-125а	1952	865	845	150	100	1195
1Д315-50	1687	600	825	200	150	821
1Д315-50а	1582	600	785	200	150	670
1Д315-50 б	1572	600	770	200	150	596
1Д315-71	1912	660	855	200	150	1170
1Д315-71а	1727	600	790	200	150	861
1Д500-63	2435	900	985	250	150	1650
1Д500-63а	2360	890	955	250	150	1590
1Д500-63 б	2320	890	955	250	150	1520
1Д630-90	2555	1000	1085	250	200	2210
1Д630-90а	2470	1040	1035	250	200	1880

Продолжение табл. П.7-2

1	2	3	4	5	6	7
1Д630-90 б	2440	1040	1035	250	200	1750
1Д630-125	2705	1320	1580	250	150	2980
1Д630-125а	2705	795	1115	250	150	2635
1Д630-125 б	2555	795	2225	250	150	2451
1Д800-56	2470	1040	1100	300	200	1655
1Д800-56а	2362	935	1065	300	200	1474
1Д800-56 б	2325	935	1065	300	200	1566
1Д1250-63	2645	1060	1220	350	250	2740
1Д1250-63а	2595	1060	1220	350	250	2570
1Д1250-63 б	2510	990	1042	350	250	2250
1Д1250-125	3243	1470	1705	350	200	4934
1Д1250-125а	2938	1370	1640	350	200	3783
1Д1250-125 б	2938	1370	1640	350	200	3643
1Д1600-90	3243	1470	1705	350	300	4460
1Д1600-90а	2938	1370	1640	350	300	3614
1Д1600-90 б	2938	1370	1640	350	300	2251
АД2000-21-2	2895	1230	1350	500	400	3050
АД2000-100-2	3845	1390	1550	500	300	5730
АД2500-62-2	3460	1810	1670	500	400	5930
АД3200-33-2	3445	1800	1760	600	500	5250
АД3200-75-2	4310	1700	1740	600	400	8930
АД4000-95-2	4850	1800	1755	600	500	12050
АД6300-27-3	4162	1767	1760	800	600	8100
АД6300-80-2	5470	2150	2115	800	600	18170

приложение п.8

МНОГОСТУПЕНЧАТЫЕ НАСОСЫ типов ЦН, ЦНС, ЦНСс

Насосные агрегаты типа ЦН - центробежные многоступенчатые горизонтальные спиральные, с рабочим колесом одностороннего входа [30].

Предназначены для перекачивания воды и жидкостей, имеющих сходные с водой свойства по вязкости и химической активности, температурой до 100° C, с максимальной концентрацией твердых частиц 0,05% и размером 0,2 мм.

Насосные агрегаты типа ЦНС, ЦНСс - центробежные горизонтальные секционные однокорпусные.

ЦНС - предназначены для подачи чистой речной и подтоварной воды температурой до 45'С в нефтеносные пласты.

ЦНСс - предназначены для подачи в нефтеносные пласты агрессивных нефтепромысловых вод, в том числе сероводородосодержащих, плотностью до $1200~\rm kr/m^3$, температурой до $80^{\circ}\rm C$.

Применяются — ЦН в теплоэнергетике; ЦНС(c) — в нефтедобывающей промышленности.

Выбор насосов типа ЦН, ЦНС, ЦНСс можно произвести по техническим характеристикам, приведенным в табл. П.8-1.

Габаритные и присоединительные размеры этих насосных агрегатов представлены в табл. П.8-2.

Табл. П.8-1 Технические характеристики насосов типа ЦН, ЦНС, ЦНСс.

Типоразмер	Подача, м ³ /ч макс. номин. мин.	Напор, м	Частота вращения, об/мин	Мощность двигателя,, кВт	Допускаемый кавитационный запас, м, не более	КПД, %, не менее
1	2	3	4	5	6	7
ЦН 160-112	194 160 130	108 112 114	2900	90	4,8	74
ЦН 160-112а	186 150 118	95 100 103	2900	75	4,8	72
ЦН 160-1126	167 135 100	76 80 82	2900	55	48	71
ЦН 400- 105	500 400 290	95 105 116	1450	200	4,5	80
ЦН400-105а	470 380 260	85 96 105	1450	160	4	78
ЦН 400-105б	450 360 250	74 83 92	1450	132	4	77
ЦН 400-210	480 400 295	191 210 230	1450	400	4,5	79
ЦН 400-210а	470 380 260	170 192 215	1450	315	4	77
ЦН 400-210б	455 360 250	91 166 185	1450	250	4	76
ЦН 1000-180-3	1100 1000 690	170 180 190	1450	630	8	83
ЦНС 63-1400	70 63 32	1350 1400 1520	2900	630	5	57

Продолжение табл. П.8-1

1	2	3	4	5	6	7
	100	1050				
ЦНС90-1100	90	1100	2900	630	5	59
	45	1200				
	100	1330				
ЦНС 90- 1400	90	1400	2900	800	5	59
	45	1500				
	100	1820				
ЦНС 90- 1900	90	1900	2900	1000	5	60
	45	2000				
	760	1500				
ЦНС 630- 1700	630	1700	2900	4000	16	80
	300	2050				
	180	1050				
ЦНСс 180-1050	180	1050	2900	800	7	71
	100	1250				
	180	1422				
ЦНСс 180-1422	180	1422	2900	1250	7	71
	100	1750				
	180	1900				
ЦНСс 180-1900	180	1900	2900	1600	7	71
	100	2300				

Табл. П.8-2 Габаритные и присоединительные размеры насосных агрегатов ЦН, ЦНС, ЦНСс.

Типоразмер	Длина, мм	Ширина, мм	Высота, мм	Внутр. диаметр всас. патрубка, мм	Внутр. диаметр напор. патрубка, мм	Масса, кг
1	2	3	4	5	6	7
ЦН 160-112	1850	820	885	150	100	920
ЦН 160-112а	1850	820	885	150	100	960
ЦН 160-112 б	1625	710	875	150	100	720
ЦН 400- 105	2690	1215	1148	250	200	3180
ЦН 400-105а	2485	1215	1148	250	200	2605
ЦН 400-105б	2445	1215	1148	250	200	2555
ЦН 400-210	3710	1370	1645	250	200	5550
ЦН 400-210а	3785	1370	1440	250	200	5225
ЦН 400-210б	3725	1370	1440	250	200	4975
ЦН 1000-180-3	3405	1475	1630	350	250	4730
ЦНС 63- 1400	6140	1410	1645	125	105	9900
ЦНС 90-1100	5570	1410	1645	125	105	9600
ЦНС 90- 1400	5760	1410	1645	125	105	9900
ЦНС 90-1900	6140	1410	1645	125	105	10600
ЦНС 630- 1700	6760	1340	1477	300	200	20730
ЦНСс 180-1050	5232	1200	1230	150	125	9760
ЦНСс 180-1422	5890	1510	1305	150	125	12255
ЦНСс 180-1900	6372	1430	1300	150	125	13730

ПРИЛОЖЕНИЕ П.9

МНОГОСТУПЕНЧАТЫЕ НАСОСЫ типа ЦНС (Г;К)

Центробежные секционные горизонтальные высоконапорные по конструктивным особенностям и области применения разделяются на группы [30]:

ЦНС – предназначены для перекачивания нейтральной холодной воды температурой от 1 до 45°C с содержанием механических примесей не более 0,2% по массе;

ЦНСГ – предназначены для перекачивания нейтральной горячей воды температурой от 45 до 105° C;

ЦНСК — предназначены для откачки кислотных вод с показателем pH < 6.5, температурой от 1 до 40° C.

Общий вид и разрез насоса типа ЦНС приведены на рис. П.9-1 и рис. П.9-2.

Выбор насосов типа ЦНС (Γ ; K) можно произвести по техническим характеристикам, приведенным в табл. Π .9-1.

Габаритные и присоединительные размеры этих насосных агрегатов показаны в табл. П.9-2.

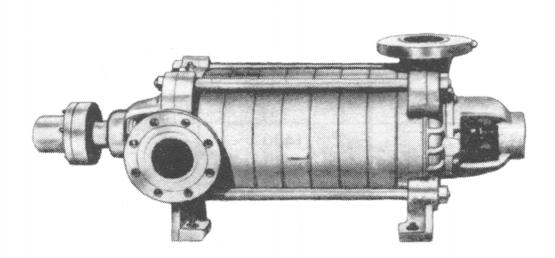


Рис.П.9-1. Общий вид насоса типа ЦНС

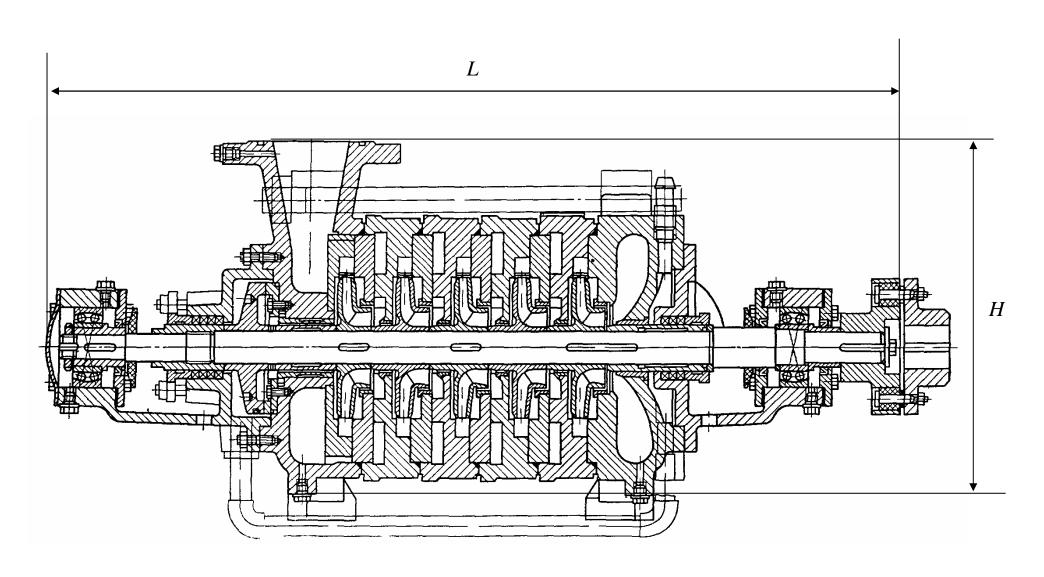


Рис. П.9-2. Разрез секционного насоса типа ЦНС

 $\label{eq:Tadpi} \mbox{Табл.} \ \Pi. 9\mbox{-}1$ Технические характеристики насосов типа «ЦНС (Γ ; K)»

Типоразмер	Подача, м ³ /ч макс. номин. мин.	Напор, м	Частота вращения, об/мин	Мощность двигателя,, кВт	КПД, %, не менее
1	2	3	4	5	6
ЦНС 13-70	13	70	2950	11	40
ЦНС 13-105	13	105	2950	11	40
ЦНС 13-140	13	140	2950	15	40
ЦНС 13-175	13	175	2950	18,5	40
ЦНС 13-210	13	210	2950	18,5	49
ЦНС 13-245	13	245	2950	22	49
ЦНС 13-280	13	280	2950	30	49
ЦНС 13-315	13	315	2950	30	49
ЦНС 13-350	13	350	2950	30	49
ЦНС 38-44	48 38 28	5 44 54	2950	11	67
ЦНС 38-66	48 38 28	28 66 79	2950	15	67
ЦНС 38-88	48 38 28	51 88 103	2950	18,5	67
ЦНС 38-110	48 38 28	74 110 126	2950	22	67
ЦНС 38-132	48 38 28	98 132 158	2950	30	69
ЦНС 38-154	48 38 28	120 154 184	2950	30	69
ЦНС 38-176	48 38 28	144 176 210	2950	30	69

Продолжение табл. П.9-1

1	2	3	4	5	6
	48	190		_	-
ЦНС 38-220	38	220	2950	45	69
	28	256			
	80	25			
ЦНС 60-66	60	66	2950	22	69
	48	75			
	80	53			
ЦНС 60-99	60	99	2950	30	69
,	48	112			
	80	81			
ЦНС 60-132	60	132	2950	45	69
,	48	149			
	80	109			
ЦНС 60-165	60	165	2950	55	69
,	48	186			
	80	137			
ЦНС 60-198	60	198	2950	55	71
,	48	223			
	80	165			
ЦНС 60-231	60	231	2950	75	71
,	48	260			
	80	193			
ЦНС 60-264	60	264	2950	75	71
,	48	297			
	80	221			
ЦНС 60-297	60	297	2950	75	71
,	48	334			
	80	250			
ЦНС 60-330	60	330	2950	110	71
	48	371			
	130	46			
ЦНС 105-98	105	98	2950	55	65
	80	110			
	130	92			
ЦНС 105-147	105	147	2950	75	65
	80	164			
	130	138			
ЦНС 105-196	105	196	2950	110	65
	80	218			
	130	184			
ЦНС 105-245	105	245	2950	132	65
	80	271			

Продолжение табл. П.9-1

1	2	3	4	5	6
	130	230	-		-
ЦНС 105-294	105	294	2950	160	65
	80	325			
	130	276			
ЦНС 105-343	105	343	2950	160	65
,	80	379			
	130	322			
ЦНС 105-392	105	392	2950	200	65
,	80	432			
	130	368			
ЦНС 105-441	105	441	2950	250	65
,	80	486			
	130	414			
ЦНС 105-490	105	490	2950	250	65
	80	540			
	220	80			
ЦНС 180-85	180	85	1475	75	70
	130	95			
	220	119			
ЦНС 180-128	180	128	1475	110	70
`	130	141			
	220	159			
ЦНС 180-170	180	170	1475	132	70
·	130	186			
	220	198			
ЦНС 180-212	180	212	1475	160	70
	130	232			
	220	237			
ЦНС 180-255	180	255	1475	200	70
	130	278			
	220	276			
ЦНС 180-297	180	297	1475	250	70
	130	323			
	220	316			
ЦНС 180-340	180	340	1475	250	70
	130	369			
	220	356			
ЦНС 180-383	180	383	1475	315	70
	130	414			
	220	395			
ЦНС 180-425	180	425	1475	315	70
	130	460			

Продолжение табл. П.9-1

1	2	3	4	5	6
	360	100			
ЦНС 300- 120	300	120	1475	160	70
,	220	130			
	360	157			
ЦНС 300- 180	300	180	1475	250	70
'	220	191			
	360	215			
ЦНС 300-240	300	240	1475	320	70
•	220	252			
	360	272			
ЦНС 300-300	300	300	1475	400	70
•	220	313			
	360	330			
ЦНС 300-360	300	360	1475	500	70
,	220	375			
	360	387			
ЦНС 300-420	300	420	1475	500	70
,	220	436			
	360	445			
ЦНС 300-480	300	480	1475	630	70
,	220	497			
	360	502			
ЦНС 300-540	300	540	1475	800	70
	220	559			
	360	560			
ЦНС 300-600	300	600	1475	800	70
	220	620			
	360	445			
ЦНС 300-480	300	480	1475	630	70
	220	497			
	360	502			
ЦНС 300-540	300	540	1475	800	70
	220	559			
	360	560			
ЦНС 300-600	300	600	1475	800	70
	220	620			

Табл. П.9-2 Габаритные и присоединительные размеры насосных агрегатов «ЦНС (Γ ; K)»

Типоразмер	Длина, мм	Ширина, мм	Высота, мм	Внутр. диаметр всас. патрубка, мм	Внутр. диаметр напор. атрубка, мм	Масса, кг
1	2	3	4	5	6	7
ЦНС 38-44	1337	460	686	80	80	448
ЦНС 38-66	1623	450	715	80	80	458
ЦНС 38-88	1744	450	717	80	80	511
ЦНС 38-110	1825	450	735	80	80	549
ЦНС 38-132	1941	450	735	80	80	646
ЦНС 38-154	2012	450	735	80	80	672
ЦНС 38-176	2083	450	735	80	80	694
ЦНС 38- 198	2279	450	760	80	80	759
ЦНС 38-220	2400	450	760	80	80	858
ЦНС 60-66	1643	534	656	100	80	516
ЦНС 60-99	1768	534	656	100	80	622
ЦНС 60-132	2023	534	650	100	80	768
ЦНС 60-165	2153	534	810	100	80	894
ЦНС 60-198	2213	534	810	100	80	918
ЦНС 60-231	2318	534	670	100	80	1060
ЦНС 60-264	2398	534	670	100	80	1086
ЦНС 60-297	2478	534	670	100	80	1112
ЦНС 60-330	2628	534	710	100	80	1282
ЦНС 105-98	1900	640	780	125	125	950
ЦНС 105-147	2100	640	820	125	125	1120
ЦНС 105-196	2450	875	820	125	125	1475
ЦНС 105-245	2550	875	870	125	125	1600

Продолжение табл. П.9-2

1	2	3	4	5	6	7
ЦНС 105-294	2400	820	770	125	125	1565
ЦНС 105-343	2500	820	770	125	125	1655
ЦНС 105-392	2700	820	770	125	125	1830
ЦНС 105-441	2800	820	1095	125	125	2000
ЦНС 105-490	2900	910	1095	125	125	2070
ЦНС 180-85	2190	890	940	150	150	1670
ЦНС180-128	2480	1000	940	150	150	2030
ЦНС 180-170	2590	1000	940	150	150	2230
ЦНС 180-212	2770	1000	940	150	150	2430
ЦНС 180-255	2900	1000	950	150	150	2900
ЦНС 180-297	3050	1020	930	150	150	3160
ЦНС 180-340	3150	1020	930	150	150	3290
ЦНС 180-383	3560	1230	1230	150	150	4300
ЦНС 180-425	3800	1230	1230	150	150	4600
ЦНС 300-120	2785	900	1180	200	200	3250
ЦНС 300-180	3115	950	1200	200	200	4150
ЦНС 300-240	3115	1100	1440	200	200	4710
ЦНС 300-300	3505	1130	1440	200	200	5250
ЦНС 300-360	3625	1130	1440	200	200	5400
ЦНС 300-420	3815	1160	1440	200	200	6300
ЦНС 300-480	3935	1160	1440	200	200	6500
ЦНС 300-540	4055	1160	1440	200	200	6660
ЦНС 300-600	4175	1160	1440	200	200	6820

ПРИЛОЖЕНИЕ П.10

МНОГОСТУПЕНЧАТЫЕ НАСОСЫ типа ЦНС (H, M)

Центробежные секционные горизонтальные высоконапорные по конструктивным особенностям и области применения разделяются на группы [30]:

ЦНСН – предназначены для перекачивания обводненной газонасыщенной и товарной нефти в системах внутрипромыслового сбора, подготовки и транспорта нефти без сероводорода с плотностью 900...1050 кг/м³, объемным содержанием газа не более 3 %, содержанием парафина не более 20% и давлением насыщенных паров не более 665 ГПа (500 мм.рт.ст.).

Насосы могут применяться для перекачивания воды температурой от 45 до 105° C, с водородным показателем рН = 7...8,5, с массовой долей механических примесей не более 0,2%, размером твердых частиц не более 0,2 мм и плотностью не более 1050 кг/м^3 . Микротвердость частиц не более 1,47 гПа.

Насос ЦНСН 105-490 используется только для перекачивания воды, насосы ЦНСН 180-425 и ЦНСН 300-600 используются только для перекачивания воды и масла.

Напорные характеристики, диаметры присоединительных патрубков и число оборотов валов электродвигателей насосов ЦНСН и ЦНСМ соответствуют насосам ЦНСА38-; 60-; 105-; 180-; 300-, предназначенных для перекачивания воды (см. приложение П.8).

Габаритные и присоединительные размеры насосных агрегатов ЦНС (H, M) приведены в табл. П.10-1.

 $\label{eq:2.1} \begin{tabular}{ll} $\operatorname{Tafn.}\ \Pi.10\mbox{-}1 \\ $\operatorname{\Gammaafo}$ аритные и присоединительные размеры \\ $\operatorname{нacochux}\ arperatob\ «ЦНС\ (H,\ M)» \end{tabular}$

	T		ı	T	T	,
Типоразмер	Мощность двигателя, кВт	Длина, мм	Ширина, мм	Высота, мм	КПД, %,	Масса, кг
1	2	3	4	5	6	7
ЦНСМ 38-44	18,5	1337	460	686	66	448
ЦНСМ 38-66	18,5	1623	450	715	66	458
ЦНСМ 38-88	30	1744	450	717	66	511
ЦНСМ 38-1 10	30	1825	450	735	66	549
ЦНСМ 38-132	37	1941	450	735	69	646
ЦНСМ 38- 154	45	2012	450	735	69	672
ЦНСМ 38-176	55	2083	450	735	69	694
ЦНСМ 38- 198	55	2279	450	760	69	759
ЦНСМ 38-220	75	2400	450	760	69	858
ЦНСМ 60-66	30	1643	534	656	67	516
ЦНСМ 60-99	45	1768	534	656	67	622
ЦНСМ 60-132	55	2023	534	650	67	768
ЦНСМ 60- 165	75	2153	534	810	67	894
ЦНСМ 60-198	75	2213	534	810	70	918
ЦНСМ 60-231	110	2318	534	670	70	1060
ЦНСМ 60-264	110	2398	534	670	70	1086
ЦНСМ 60-297	132	2478	534	670	70	1112
ЦНСМ 60-330	132	2628	534	710	70	1282
ЦНСН 105-98	75	1900	640	780	64	950
ЦНСН 105-147	110	2100	640	820	64	1120
ЦНСН 105-196	132	2450	875	820	64	1475
ЦНСН 105-245	160	2550	875	870	64	1600

Продолжение табл. П.10-1

1	2	3	4	5	6	7
ЦНСН 105-294	200	2400	820	770	64	1565
ЦНСН 105-343	250	2500	820	770	64	1655
ЦНСН 105-392	250	2700	820	770	64	1830
ЦНСН 105-441	315	2800	820	1095	64	2000
ЦНСН 105-490	250	2900	910	1095	64	2070
ЦНСН(М) 180-85	75	2190	890	940	71(72)	1670
ЦНСН(М) 180-128	110; 132	2480	1000	940	71(72)	2030
ЦНСН(М) 180-170	160	2590	1000	940	71(72)	2230
ЦНСН(М) 180-212	200	2770	1000	940	71(72)	2430
ЦНСН(М) 180-255	250	2900	1000	950	71(72)	2900
ЦНСН(М) 180-297	315	3050	1020	930	71(72)	3160
ЦНСН(М) 180-340	315	3150	1020	930	71(72)	3290
ЦНСН(М) 180-383	315	3560	1230	1230	71(72)	4300
ЦНСН(М) 180-425	315	3800	1230	1230	71(72)	4600
ЦНСН(М)300-120	200; 250	2785	900	1180	70(73)	3250
ЦНСН(М) 300-180	250; 400	3115	950	1200	70(73)	4150
ЦНСН(М) 300-240	31 5; 500	3115	1100	1440	70(73)	4710
ЦНСН(М) 300-300	400; 630	3505	1130	1440	70(73)	5250
ЦНСН(М) 300-360	500; 630	3625	1130	1440	70(73)	5400
ЦНСН(М) 300-420	630; 800	3815	1160	1440	70(73)	6300
ЦНСН(М) 300-480	630; 800	3935	1160	1440	70(73)	6500
ЦНСН(М) 300-540	800	4055	1160	1440	70(73)	6660
ЦНСН(М) 300-600	800	4175	1160	1440	70(73)	6820

НАСОСЫ МАГИСТРАЛЬНЫХ НЕФТЕПРОДУКТОПРОВОДОВ

Насосы предназначены для транспортировки нефтепродуктов и нефти с температурой до 353 К ($+80^{\circ}$ С), кинематической вязкостью не свыше 3 см²/сек, механическими примесями по объему не более 0,05% и размером не более 0,2 мм (рис. П.11-1). Насосы с подачей 1800 м³/ч (500 л/с) и более предназначены только для перекачки нефти. Насосы с подачей до 1250 м³/ч – секционные многоступенчатые, с подачей 1250 м³/ч и выше – спиральные одноступенчатые [34].

Основные параметры насосов для номинальных режимов работы при частоте вращения вала 3000 об/мин приведены в табл. П.11-1.

Ряды полей H - Q центробежных насосов типа HM приведены на рис. $\Pi.11-2$. Поле H-Q представляет собой рекомендуемую зону режимов работы каждого типоразмера насоса при больших Верхняя КПД. определяет значениях линия рабочую характеристику насоса при максимальном наружном диаметре соответствует **РИЖИН** минимальному размеру наружного диаметра рабочего колеса, который может быть получен путем обточки.

По подаче и напору на сводном графике полей Q-H предварительно выбирают насос требуемого типоразмера, а затем по графической характеристике (рис. $\Pi.11-3.1...\Pi.11-3.9$) уточняют правильность выбора. По графической характеристике определяют необходимый диаметр рабочего колеса насоса.

Конструкция нефтяного магистрального спирального насоса типа HM приведена на рис. П.11-1

Габаритные размеры магистральных насосов указаны в табл. П.11-2 [31.

Вал, рабочее колесо и корпус насоса изготавливают из следующих материалов:

- корпус чугун СЧ 21-40;
- вал сталь 40X;
- рабочее колесо сталь 15Л-1 для насоса HM 10000-210; чугун СЧ 21-40 для насоса HM 1250-260; сталь 25Л-1 для остальных марок HM.

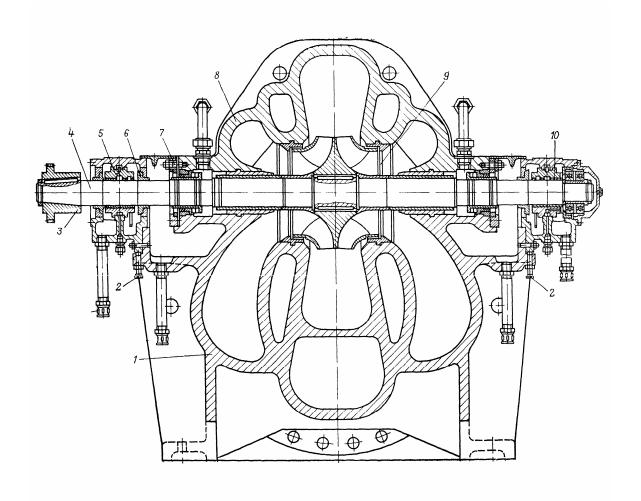


Рис. П.11-1. Нефтяной магистральный спиральный насос типа НМ: 1- корпус, 2- регулировочный винт, 3- втулка зубчатая, 4- ротор, 5- подшипник опорный, 6- маслоотражатель; 7- торцовое уплотнение, 8- крышка корпуса, 9- уплотнительное кольцо, 10- подшипник радиально упорный

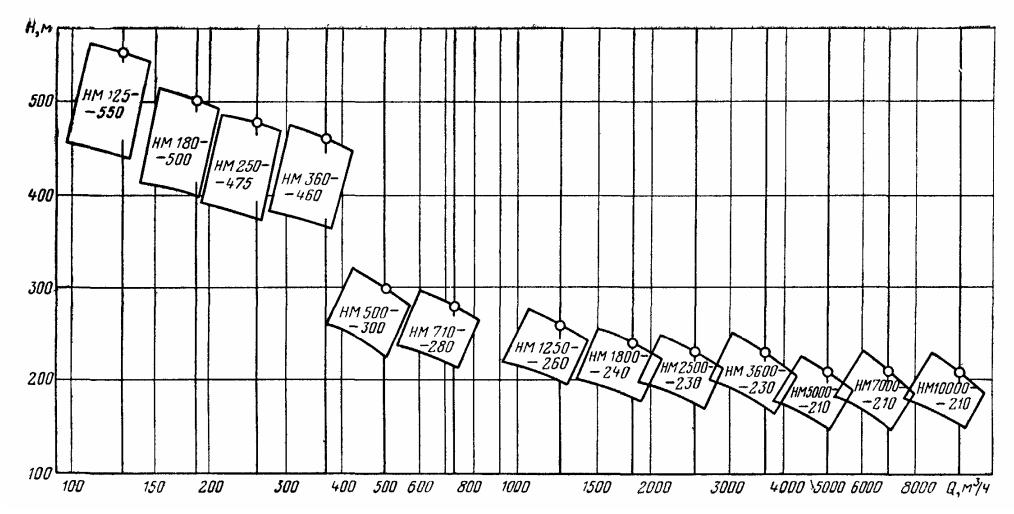


Рис. П.11-2. Нормальный ряд нефтяных магистральных центробежных насосов

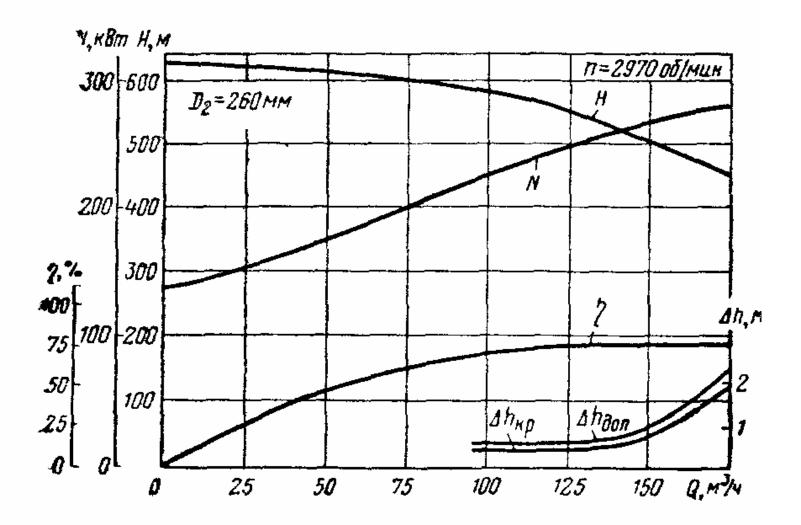


Рис. П.11-3.1. Характеристика насоса НМ 125-550

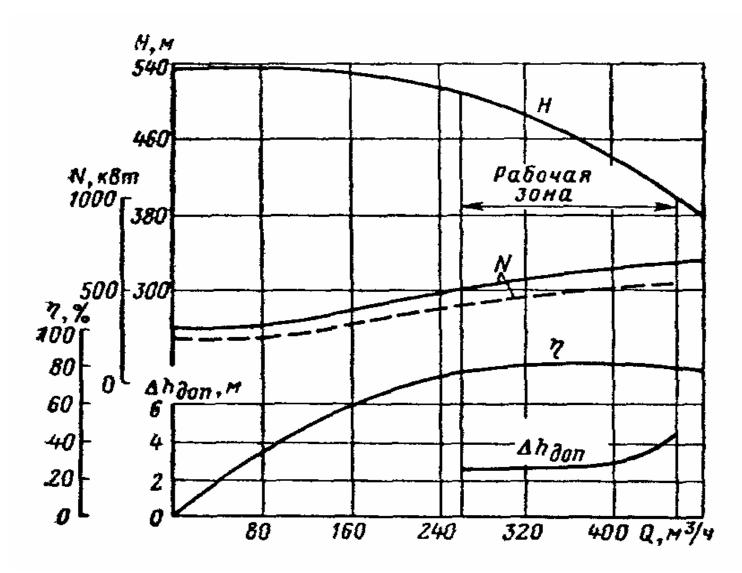


Рис. П.11-3.2. Характеристика насоса НМ 360-460

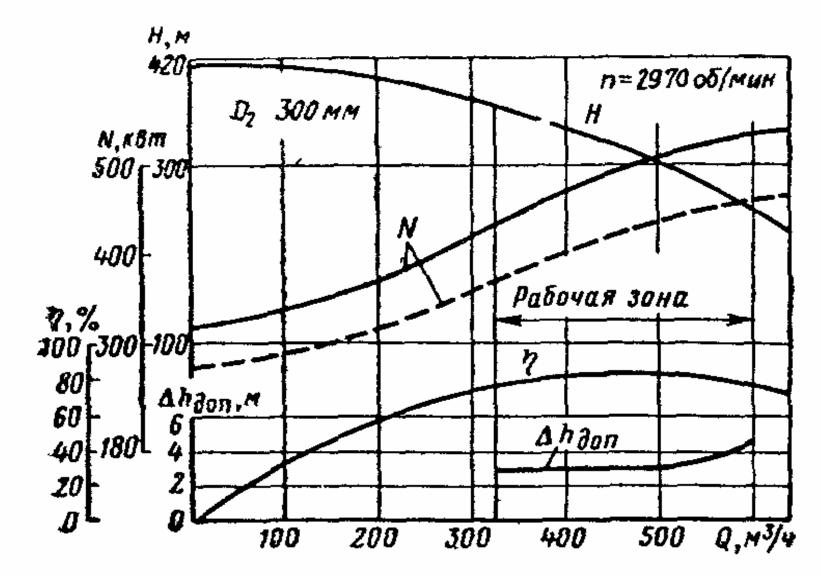


Рис. П.11-3.3. Характеристика насоса НМ 500-300

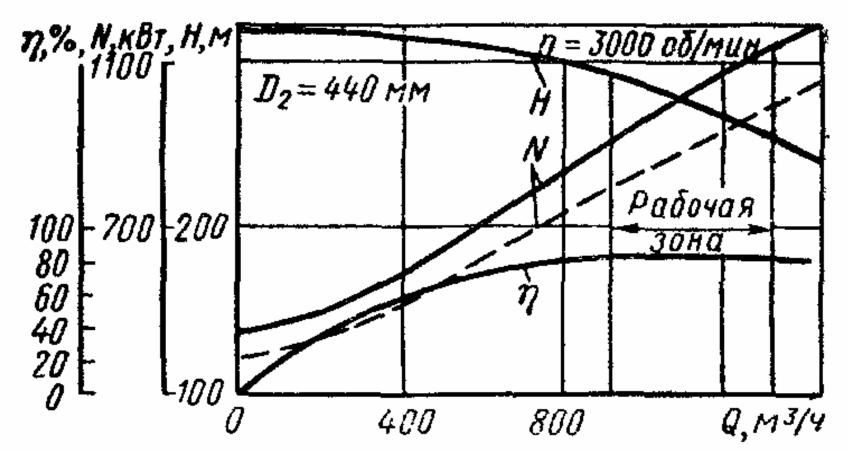


Рис. П.11-3.4. Характеристика насоса НМ 1250-260

Рис. П.11-3.5. Характеристика насоса НМ 2500-230

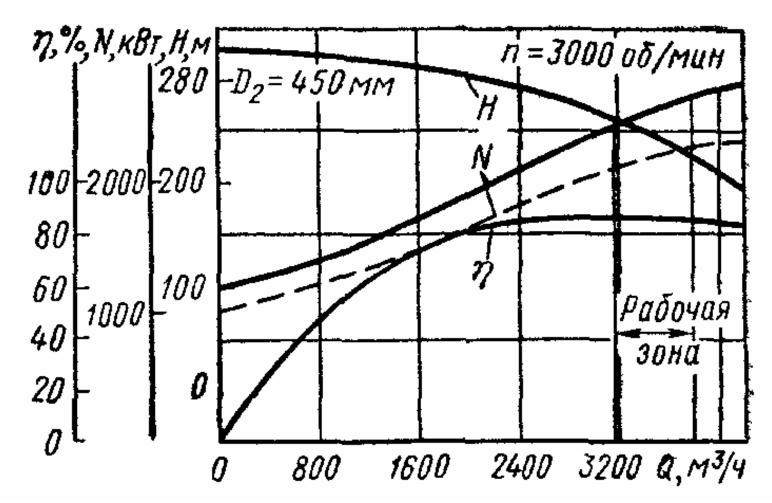


Рис. П.11-3.6. Характеристика насоса НМ 3600-230

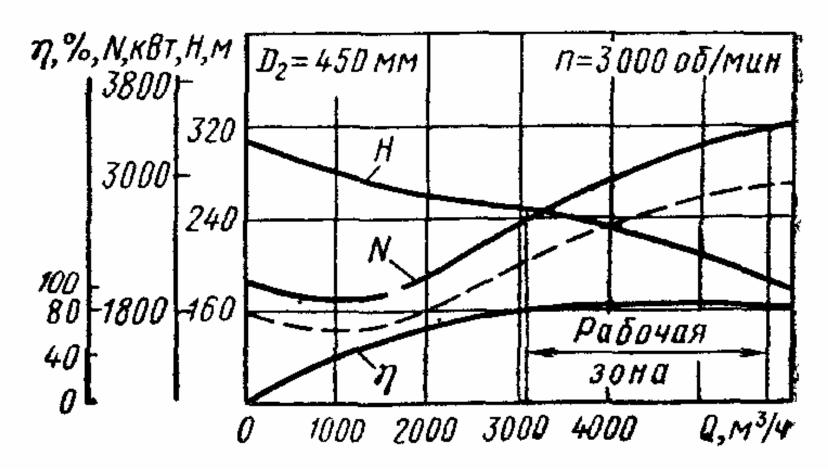


Рис. П.11-3.7. Характеристика насоса НМ 5000-210

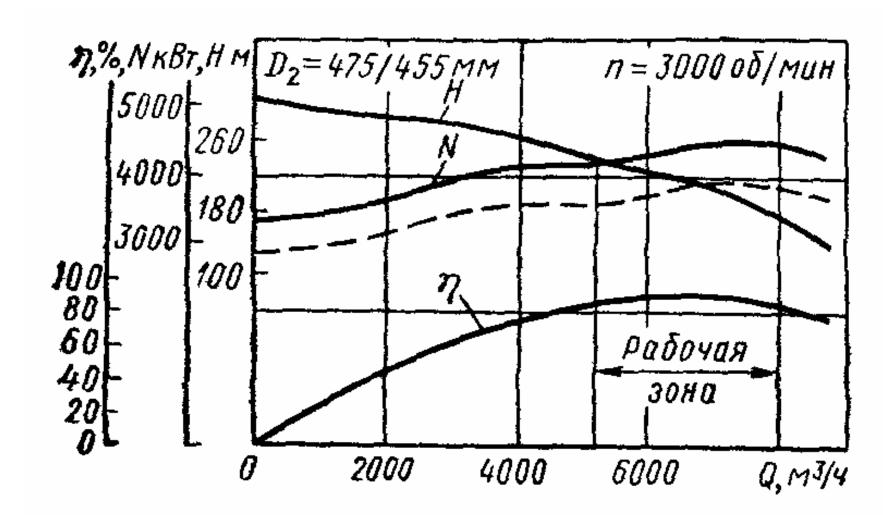


Рис. П.11-3.8. Характеристика насоса НМ 7000-210

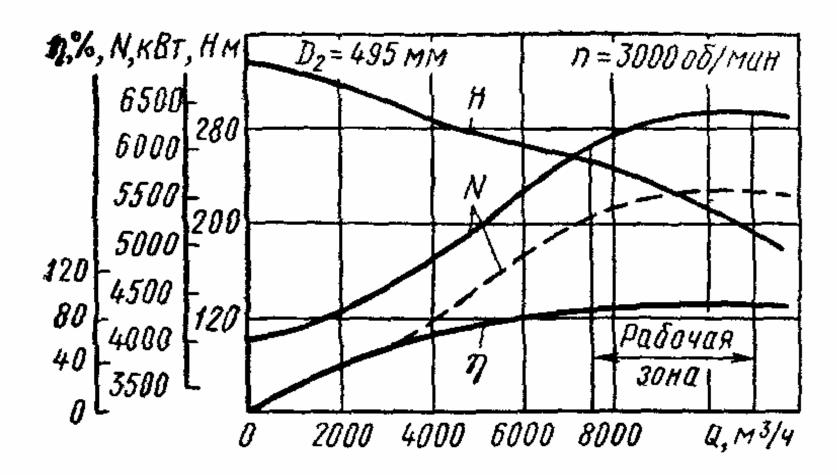


Рис. П.11-3.9. Характеристика насоса НМ 10000-210

Табл. П.11-1 Технические характеристики нефтяных магистральных насосов

Показатели	HM 125-550	HM 180-500	HM 250-475	HM 360-460	HM 500-300	HM 710-280	HM 1250 260	HM 1800-240	HM 2500-230	HM 3600-230	HM 5000-210	HM 7000-210	HM 1000-210
Подача, м ³ /ч	125	180	250	360	500	710	1250	1800	2500	3600	5000	7000	10000
Подача, л/с	35	50	70	100	139	197	348	500	695	1000	1390	1940	2780
Напор, м	550	500	475	460	300	280	260	240	230	230	210	210	210
Допустимый кавита- ционный запас, не менее, м	4	5	6	8	12	14	20	25	32	40	42	52	65
К. п. д., не менее, %	68	70	72	76	78	80	80	83	86	87	88	89	89
Масса, не более, кг	1950	1950	3300	3300	3100	3200	3000	4300	5350	5750	7050	7300	11400

Табл. П.11-2 Габаритные размеры магистральных насосов (в мм)

Марка насоса	Длина (мм)	Ширина (мм)	Высота (мм)
HM 125-550	2050	2510	1230
HM 180-500	2050	1510	1230
HM 250-475	2360	1620	1260
HM 360-460	2360	1620	1260
HM 500-300	2210	1620	1260
HM 710-280	2210	1620	1260
HM 1250-260	1750	1580	1000
HM 1800-240	1950	1800	1200
HM 2500-230	2140	2050	1460
HM 3600-230	2140	2120	1500
HM 5000-210	2300	3050	1660
HM 7000-210	2400	2700	1720
HM 10000-210	2500	2900	2130

НАСОСЫ МАГИСТРАЛЬНЫЕ НЕФТЯНЫЕ ПОДПОРНЫЕ

Для создания необходимого напора на входе основных магистральных насосов применяют подпорные насосы. Они могут быть различных конструкций. Наиболее широко используются подпорные насосы типа НД [34]. Техническая характеристика подпорных центробежных насосов типа НД. приведена в табл. П.12-1, а их габаритные и присоединительные размеры в табл. П.12-2.

Насосы серии НД по конструкции аналогичны, все одноступенчатые с рабочим колесом двустороннего входа.

Опорой вала насосов 8НДвН, 12НДсН, 20НДсН и 32НД-8 X 1 являются шарикоподшипники. У насосов 14НДсН, 18НДсН, 22НДсН и 24НДсН имеются подшипники скольжения с разъемом в горизонтальной плоскости. Вкладыши подшипников залиты высококачественным баббитом.

У насосов НДсН коэффициент быстроходности составляет 90...110, у насосов НДвН – 60. Габаритные размеры насосов НД даны в табл. П.12-2. Подпорные насосы работают с частотой вращения вала 600, 750 и 1000 об/мин (синхронных). При этом они имеют высокие значения КПД, обладают хорошей всасывающей способностью, работают плавно, без вибраций, удобны и надежны в эксплуатации.

Другим типом подпорных нефтяных насосов являются насосы серии НМП. Насосы НМП — центробежные, горизонтальные, спиральные одноступенчатые.

Техническая характеристика этих насосов приведена в табл. П.12-3. Основные детали насосов НМП выполнены из следующих материалов:

- корпус чугун СЧ 18-36;
- вал сталь 40 (для насосов НМП 250-74 и НМП 3600-78), сталь 45 (для насосов НМП5000-415);
 - рабочее колесо чугун СЧ 21-40;
 - предвключенное колесо сталь 2Х13Л.

Табл. П.12-1 Техническая характеристика подпорных насосов типа НД

Показатели	8НДвН	12НДсН	14НДсН	18НДсН	20НДсН	22НДсН	32НД8х1	24НДСН
Подача, м3/ч	600	1000	1260	1980	2700	3600	3000	4000
Напор, м	35	24	37	34	39	52	76	69
КПД,%	79	85	87	91	90	92	76	82
Частота вращения вала, об/мин	960	960	960	730	730	730	735	590
Наружный диаметр колеса, мм	525	460	-540	700	765	860	935	1100
Ширина лопатки по наружному торцу, мм		63	67	84	92		102	_
Диаметр всасывающего патрубка, мм	250	350	400	500	600	700	800	•800
Диаметр нагнетательного патрубка, мм	200	300	350	450	500	600	600	600
Допустимая вакуумметрическая высота всасывания, м	5,5	5	5	4,8	4,8	3,9	3,9	5,5
Масса насоса, кг	865	1592		_	4300	5750	8000	8000

Табл. П.12-2 Габаритные и присоединительные размеры подпорных насосов типа НД

Типоразмер	Длина, мм	Ширина, мм	Высота, мм	Внутр. диаметр всас. патрубка, мм	Внутр. диаметр напор. атрубка, мм	Масса, кг
8НДвН	1258	825	1236	250	200	865
12НДсН	1392	1005	1354	350	300	1400
14НДсН	1645	1117	1747	400	350	1592
18НДсН	2080	1430	2130	500	450	3300
20НДсН	2300	1590	2104	600	500	4212
24НДсН	2695	2089	2841	800	600	9058

Табл. Π .12-3 Техническая характеристика подпорных насосов типа НМП

Показатели	НМП 2500-74	НМП 3600-78	НМП 5000-115
Подача, м3/ч	2500	3600	5000
Напор, м	74	78	115
КПД (при работе на воде), %	72	83	85
Частота вращения вала, об/мин	1000	1000	1000
Диаметр рабочего колеса, мм	690	725	840
Допускаемый кавитационный запас (при работе на воде), м	3	3	3,5
Мощность насоса (при работе на нефти), кВт	602	792	1590
Электродвигатель	ДС-118/44-6	ДС-118/44-6	СДН-2-16-59-6
Мощность электродвигателя, кВт	800	800	1600
Масса, кг:		·	1
насоса	7775	7775	9321
агрегата	15637	15637	19 735 или 17 235

ЛИТЕРАТУРА

- 1. Есьман И.Г. Насосы, М. Гостоптехиздат, 1954, 286 с.
- 2. Караев М.А., Меликов М.А., Мустафаева Г.А. О коэффициенте быстроходности центробежных насосов и пересчете их характеристики с воды на более вязкую жидкость. // Известие высших технических учебных заведений Азербайджана, №6, 2003, с.24-27.
- 3. Ибатулов К.А. Практические расчеты по буровым и эксплуатационным машинам и механизмам, Баку, Азнефтеиздат 1955, 293 с.
- 4. Караев М.А. Проблемы повышения эффективности работы буровых и нефтепромысловых насосов. Докторская диссертация, Баку, 1981.
- 5. Караев М.А., Амиров Ф.А. Распределение общего КПД в центробежном насосе 4К-6 при работе на водных растворах полиакриламида // нефть и газ, 1975, №9.
- 6. Методическое руководство по определению характеристик центробежных насосов. Уфа, 1976, с-70.
- 7. Руководящий документ. Методика расчета напорных характеристик и пересчета параметров центробежных насосов магистральных нефтепроводов при изменении частоты вращения и вязкости перекачиваемой жидкости. РД39-30-990-84, 1984, 37 с.
- 8. Степанов А.И. Центробежные и осевые насосы. М. Машгиз, 1960.
- 9. Аитова Н.3. Режимы работы насосных станций с высокооборотными регулируемыми насосами при перекачке вязких нефтей по магистральным трубопроводам. Автореферат кандидатской диссертации. Уфа, 1984.

- 10. Михайлов А.К., Малюшенко В.В. Лопастные насосы. М.Машиностроение, 1977, 288 с.
- 11. Башта Т.М. и др. Гидравлика, гидромашины и гидроприводы. М. Машгиз, 1970, 246 с.
- 12. Суханов Д.Я. Работа лопастных насосов на вязких жидкостях. М. Машгиз, 62 с.
- 13. Ляпков П.Д. О влиянии вязкости жидкости на характеристики центробежных насосов: Тр. ВНИИНЕФТЕГАЗ, 1964, вып.41.
- 14. Шищенко Р.И. Буровые и эксплуатационные машины и механизмы, Азнефтехимиздат, 1947.
- 15. Шерстюк К.Н. Насосы, вентиляторы, компрессоры, Высшая школа, 1972.
- 16. Есьман И.Г. Насосы. ГОНТИ, 1939.
- 17. Ippen A.T. The influence of viscosity on Centrifugal pump Performance. The Trans. of the ASME, vol. 68, № 18, 1946.
- 18. Пфлейдерер К. Лопаточные машины для жидкостей и газов. Машгиз. 1960, 883 с.
- 19. Жукова Т.И. Исследование всасывающей способности центробежных насосов, работающих на вязких жидкостях. Автореферат кандидатской диссертации. МИНХиГП им.И.М.Губкина, М. 1955.
- C.A., С.К. 20. Абдурашитов Караев М.А., Гусейнов Экспериментальное исследование однодисковых центробежных 8HD6x1 14 HDCK насосов И при жидкостей.//Транспорт перекачке высоковязких И хранение нефти и нефтепродуктов, №10, 1967.
- 21. Поляков В.В., Скворцов Л.С. Насосы и вентиляторы. М. Стройиздат 1990, 336 с.

- 22. Игнатьев В.Г. Экспериментальное исследование особенности работы центробежных насосов в системе промыслового сбора и транспорта парафинистых нефтей. Канд. дисс. Небитдаг, 1968.
- 23. Айзенштейн М.Д. Центробежные насосы для нефтяной промышленности. М. Госшоптехиздат, 1957, 363 с..
- 24. Ибатулов К.А. Исследование в области нефтепромысловых машин и механизмов. Докторская диссертация, Баку, 1961.
- 25. Ибатулов К.А. Гидравлические машины и механизмы в нефтяной промышленности. М.Недра, 1972, 286 с.
- 26. Ибатулов К.А. Перекачка глинистых растворов центробежными насосами, Журнал «Нефть и газ», №3, 1961.
- 27. Белоусов В.А., Еронин В.И., Попов А.М. Результаты промышленных испытаний подпорного насосного агрегата НМП2500-74.//Транспорт и хранение нефти и нефтепродуктов, №9, 1975.
- 28. Еронин В.И., Колпаков Л.Г., Овечкин В.В. Результаты промышленных испытаний насосного агрегата НМ7000-230//РНТС, Транспорт и хранение нефти и нефтепродуктов, №8, 1973, М.ВНИИОЭНГ.
- 29. Френкель Н.З. Гидравлика, М. Госэнергоиздат, 1956, 456 с.
- 30. Каталог насосного оборудования. Часть 1. Россия и СНГ, Гидромашсервис. М., 2003, 48 с
- 31. Нефтепромысловое оборудование. Справочник, под редакцией Е.И. Бухаленко. «Недра», М.,1990, 559 с.
- 32. Насосы центробежные двустороннего входа. Каталог, М., 1982, 24 с.

- 33. Насосы общего назначения типа К. Каталог, М.,1977, 30 с.
- 34. Центробежные нефтяные магистральные и подпорные насосы. Каталог, М., 1973, 20 с.
- 35. http://www.fokino.ru/ns.htm
- 36. http://document.org.ua/techno/pump/
- 37. http://www.ges.ru/book/book_pumps/
- 38. www.irimex.ru/services/catalog/nasos/
- 39. http://www.chemicalpumps.ru/